Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 7 Mar 2024 (v1), last revised 11 Jun 2024 (this version, v2)]
Title:GreenBytes: Intelligent Energy Estimation for Edge-Cloud
View PDF HTML (experimental)Abstract:This study investigates the application of advanced machine learning models, specifically Long Short-Term Memory (LSTM) networks and Gradient Booster models, for accurate energy consumption estimation within a Kubernetes cluster environment. It aims to enhance sustainable computing practices by providing precise predictions of energy usage across various computing nodes. Through meticulous analysis of model performance on both master and worker nodes, the research reveals the strengths and potential applications of these models in promoting energy efficiency. The LSTM model demonstrates remarkable predictive accuracy, particularly in capturing dynamic computing workloads over time, evidenced by low mean squared error (MSE) rates and the ability to closely track actual energy consumption trends. Conversely, the Gradient Booster model showcases robustness and adaptability across different computational environments, despite slightly higher MSE values. The study underscores the complementary nature of these models in advancing sustainable computing practices, suggesting their integration into energy management systems could significantly enhance environmental sustainability in technology operations.
Submission history
From: Kasra Kassai [view email][v1] Thu, 7 Mar 2024 17:12:12 UTC (1,871 KB)
[v2] Tue, 11 Jun 2024 19:27:49 UTC (1,871 KB)
Current browse context:
cs.DC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.