Computer Science > Information Retrieval
[Submitted on 29 Feb 2024]
Title:Aligning Language Models for Versatile Text-based Item Retrieval
View PDF HTML (experimental)Abstract:This paper addresses the gap between general-purpose text embeddings and the specific demands of item retrieval tasks. We demonstrate the shortcomings of existing models in capturing the nuances necessary for zero-shot performance on item retrieval tasks. To overcome these limitations, we propose generate in-domain dataset from ten tasks tailored to unlocking models' representation ability for item retrieval. Our empirical studies demonstrate that fine-tuning embedding models on the dataset leads to remarkable improvements in a variety of retrieval tasks. We also illustrate the practical application of our refined model in a conversational setting, where it enhances the capabilities of LLM-based Recommender Agents like Chat-Rec. Our code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.