Computer Science > Cryptography and Security
[Submitted on 27 Feb 2024]
Title:The Seeker's Dilemma: Realistic Formulation and Benchmarking for Hardware Trojan Detection
View PDF HTML (experimental)Abstract:This work focuses on advancing security research in the hardware design space by formally defining the realistic problem of Hardware Trojan (HT) detection. The goal is to model HT detection more closely to the real world, i.e., describing the problem as "The Seeker's Dilemma" (an extension of Hide&Seek on a graph), where a detecting agent is unaware of whether circuits are infected by HTs or not. Using this theoretical problem formulation, we create a benchmark that consists of a mixture of HT-free and HT-infected restructured circuits while preserving their original functionalities. The restructured circuits are randomly infected by HTs, causing a situation where the defender is uncertain if a circuit is infected or not. We believe that our innovative dataset will help the community better judge the detection quality of different methods by comparing their success rates in circuit classification. We use our developed benchmark to evaluate three state-of-the-art HT detection tools to show baseline results for this approach. We use Principal Component Analysis to assess the strength of our benchmark, where we observe that some restructured HT-infected circuits are mapped closely to HT-free circuits, leading to significant label misclassification by detectors.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.