Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Feb 2024 (v1), last revised 30 Mar 2024 (this version, v2)]
Title:Video-Based Autism Detection with Deep Learning
View PDF HTML (experimental)Abstract:Individuals with Autism Spectrum Disorder (ASD) often experience challenges in health, communication, and sensory processing; therefore, early diagnosis is necessary for proper treatment and care. In this work, we consider the problem of detecting or classifying ASD children to aid medical professionals in early diagnosis. We develop a deep learning model that analyzes video clips of children reacting to sensory stimuli, with the intent of capturing key differences in reactions and behavior between ASD and non-ASD participants. Unlike many recent studies in ASD classification with MRI data, which require expensive specialized equipment, our method utilizes a powerful but relatively affordable GPU, a standard computer setup, and a video camera for inference. Results show that our model effectively generalizes and understands key differences in the distinct movements of the children. It is noteworthy that our model exhibits successful classification performance despite the limited amount of data for a deep learning problem and limited temporal information available for learning, even with the motion artifacts.
Submission history
From: Manuel Serna-Aguilera [view email][v1] Mon, 26 Feb 2024 17:45:00 UTC (213 KB)
[v2] Sat, 30 Mar 2024 14:38:44 UTC (91 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.