Computer Science > Computational Engineering, Finance, and Science
[Submitted on 23 Feb 2024]
Title:Hybrid Physics-Based and Data-Driven Modeling of Vascular Bifurcation Pressure Differences
View PDF HTML (experimental)Abstract:Reduced-order models (ROMs) allow for the simulation of blood flow in patient-specific vasculatures without the high computational cost and wait time associated with traditional computational fluid dynamics (CFD) models. Unfortunately, due to the simplifications made in their formulations, ROMs can suffer from significantly reduced accuracy. One common simplifying assumption is the continuity of static or total pressure over vascular junctions. In many cases, this assumption has been shown to introduce significant error. We propose a model to account for this pressure difference, with the ultimate goal of increasing the accuracy of cardiovascular ROMs. Our model successfully uses a structure common in existing ROMs in conjunction with machine-learning techniques to predict the pressure difference over a vascular bifurcation. We analyze the performance of our model on steady and transient flows, testing it on three bifurcation cohorts representing three different bifurcation geometric types. We also compare the efficacy of different machine-learning techniques and two different model modalities.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.