Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 19 Feb 2024]
Title:Evaluating Versal AI Engines for option price discovery in market risk analysis
View PDFAbstract:Whilst Field-Programmable Gate Arrays (FPGAs) have been popular in accelerating high-frequency financial workload for many years, their application in quantitative finance, the utilisation of mathematical models to analyse financial markets and securities, is less mature. Nevertheless, recent work has demonstrated the benefits that FPGAs can deliver to quantitative workloads, and in this paper, we study whether the Versal ACAP and its AI Engines (AIEs) can also deliver improved performance. We focus specifically on the industry standard Strategic Technology Analysis Center's (STAC) derivatives risk analysis benchmark STAC-A2. Porting a purely FPGA-based accelerator STAC-A2 inspired market risk (SIMR) benchmark to the Versal ACAP device by combining Programmable Logic (PL) and AIEs, we explore the development approach and techniques, before comparing performance across PL and AIEs. Ultimately, we found that our AIE approach is slower than a highly optimised existing PL-only version due to limits on both the AIE and PL that we explore and describe.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.