Computer Science > Machine Learning
[Submitted on 13 Feb 2024]
Title:Parallel-friendly Spatio-Temporal Graph Learning for Photovoltaic Degradation Analysis at Scale
View PDFAbstract:We propose a novel Spatio-Temporal Graph Neural Network empowered trend analysis approach (ST-GTrend) to perform fleet-level performance degradation analysis for Photovoltaic (PV) power networks. PV power stations have become an integral component to the global sustainable energy production landscape. Accurately estimating the performance of PV systems is critical to their feasibility as a power generation technology and as a financial asset. One of the most challenging problems in assessing the Levelized Cost of Energy (LCOE) of a PV system is to understand and estimate the long-term Performance Loss Rate (PLR) for large fleets of PV inverters. ST-GTrend integrates spatio-temporal coherence and graph attention to separate PLR as a long-term "aging" trend from multiple fluctuation terms in the PV input data. To cope with diverse degradation patterns in timeseries, ST-GTrend adopts a paralleled graph autoencoder array to extract aging and fluctuation terms simultaneously. ST-GTrend imposes flatness and smoothness regularization to ensure the disentanglement between aging and fluctuation. To scale the analysis to large PV systems, we also introduce Para-GTrend, a parallel algorithm to accelerate the training and inference of ST-GTrend. We have evaluated ST-GTrend on three large-scale PV datasets, spanning a time period of 10 years. Our results show that ST-GTrend reduces Mean Absolute Percent Error (MAPE) and Euclidean Distances by 34.74% and 33.66% compared to the SOTA methods. Our results demonstrate that Para-GTrend can speed up ST-GTrend by up to 7.92 times. We further verify the generality and effectiveness of ST-GTrend for trend analysis using financial and economic datasets.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.