Mathematics > Statistics Theory
[Submitted on 12 Feb 2024 (v1), last revised 18 Sep 2024 (this version, v2)]
Title:Computationally efficient reductions between some statistical models
View PDFAbstract:We study the problem of approximately transforming a sample from a source statistical model to a sample from a target statistical model without knowing the parameters of the source model, and construct several computationally efficient such reductions between canonical statistical experiments. In particular, we provide computationally efficient procedures that approximately reduce uniform, Erlang, and Laplace location models to general target families. We illustrate our methodology by establishing nonasymptotic reductions between some canonical high-dimensional problems, spanning mixtures of experts, phase retrieval, and signal denoising. Notably, the reductions are structure-preserving and can accommodate missing data. We also point to a possible application in transforming one differentially private mechanism to another.
Submission history
From: Ashwin Pananjady [view email][v1] Mon, 12 Feb 2024 15:32:38 UTC (64 KB)
[v2] Wed, 18 Sep 2024 16:13:18 UTC (4,112 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.