Computer Science > Computation and Language
[Submitted on 9 Feb 2024 (v1), last revised 25 Oct 2024 (this version, v2)]
Title:Calibrating Long-form Generations from Large Language Models
View PDF HTML (experimental)Abstract:To enhance Large Language Models' (LLMs) reliability, calibration is essential -- the model's assessed confidence scores should align with the actual likelihood of its responses being correct. However, current confidence elicitation methods and calibration metrics typically rely on a binary true/false assessment of response correctness. This approach does not apply to long-form generation, where an answer can be partially correct. Addressing this gap, we introduce a unified calibration framework, in which both the correctness of the LLMs' responses and their associated confidence levels are treated as distributions across a range of scores. Within this framework, we develop three metrics to precisely evaluate LLM calibration and further propose two confidence elicitation methods based on self-consistency and self-evaluation. Our experiments, which include long-form QA and summarization tasks, demonstrate that larger models don't necessarily guarantee better calibration, that calibration performance is found to be metric-dependent, and that self-consistency methods excel in factoid datasets. We also find that calibration can be enhanced through techniques such as fine-tuning, integrating relevant source documents, scaling the temperature, and combining self-consistency with self-evaluation. Lastly, we showcase a practical application of our system: selecting and cascading open-source models and ChatGPT to optimize correctness given a limited API budget. This research not only challenges existing notions of LLM calibration but also offers practical methodologies for improving trustworthiness in long-form generation.
Submission history
From: Yukun Huang [view email][v1] Fri, 9 Feb 2024 17:00:32 UTC (8,934 KB)
[v2] Fri, 25 Oct 2024 21:29:37 UTC (540 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.