Computer Science > Robotics
[Submitted on 7 Feb 2024]
Title:Online and Certifiably Correct Visual Odometry and Mapping
View PDF HTML (experimental)Abstract:This paper proposes two new algorithms for certified perception in safety-critical robotic applications. The first is a Certified Visual Odometry algorithm, which uses a RGBD camera with bounded sensor noise to construct a visual odometry estimate with provable error bounds. The second is a Certified Mapping algorithm which, using the same RGBD images, constructs a Signed Distance Field of the obstacle environment, always safely underestimating the distance to the nearest obstacle. This is required to avoid errors due to VO drift. The algorithms are demonstrated in hardware experiments, where we demonstrate both running online at 30FPS. The methods are also compared to state-of-the-art techniques for odometry and mapping.
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.