Computer Science > Computation and Language
[Submitted on 8 Feb 2024]
Title:Efficient Models for the Detection of Hate, Abuse and Profanity
View PDFAbstract:Large Language Models (LLMs) are the cornerstone for many Natural Language Processing (NLP) tasks like sentiment analysis, document classification, named entity recognition, question answering, summarization, etc. LLMs are often trained on data which originates from the web. This data is prone to having content with Hate, Abuse and Profanity (HAP). For a detailed definition of HAP, please refer to the Appendix. Due to the LLMs being exposed to HAP content during training, the models learn it and may then generate hateful or profane content. For example, when the open-source RoBERTa model (specifically, the RoBERTA base model) from the HuggingFace (HF) Transformers library is prompted to replace the mask token in `I do not know that Persian people are that MASK` it returns the word `stupid` with the highest score. This is unacceptable in civil this http URL detection of Hate, Abuse and Profanity in text is a vital component of creating civil and unbiased LLMs, which is needed not only for English, but for all languages. In this article, we briefly describe the creation of HAP detectors and various ways of using them to make models civil and acceptable in the output they generate.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.