Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Feb 2024]
Title:FoolSDEdit: Deceptively Steering Your Edits Towards Targeted Attribute-aware Distribution
View PDF HTML (experimental)Abstract:Guided image synthesis methods, like SDEdit based on the diffusion model, excel at creating realistic images from user inputs such as stroke paintings. However, existing efforts mainly focus on image quality, often overlooking a key point: the diffusion model represents a data distribution, not individual images. This introduces a low but critical chance of generating images that contradict user intentions, raising ethical concerns. For example, a user inputting a stroke painting with female characteristics might, with some probability, get male faces from SDEdit. To expose this potential vulnerability, we aim to build an adversarial attack forcing SDEdit to generate a specific data distribution aligned with a specified attribute (e.g., female), without changing the input's attribute characteristics. We propose the Targeted Attribute Generative Attack (TAGA), using an attribute-aware objective function and optimizing the adversarial noise added to the input stroke painting. Empirical studies reveal that traditional adversarial noise struggles with TAGA, while natural perturbations like exposure and motion blur easily alter generated images' attributes. To execute effective attacks, we introduce FoolSDEdit: We design a joint adversarial exposure and blur attack, adding exposure and motion blur to the stroke painting and optimizing them together. We optimize the execution strategy of various perturbations, framing it as a network architecture search problem. We create the SuperPert, a graph representing diverse execution strategies for different perturbations. After training, we obtain the optimized execution strategy for effective TAGA against SDEdit. Comprehensive experiments on two datasets show our method compelling SDEdit to generate a targeted attribute-aware data distribution, significantly outperforming baselines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.