Computer Science > Machine Learning
[Submitted on 1 Feb 2024 (v1), last revised 22 May 2024 (this version, v2)]
Title:LTAU-FF: Loss Trajectory Analysis for Uncertainty in Atomistic Force Fields
View PDF HTML (experimental)Abstract:Model ensembles are effective tools for estimating prediction uncertainty in deep learning atomistic force fields. However, their widespread adoption is hindered by high computational costs and overconfident error estimates. In this work, we address these challenges by leveraging distributions of per-sample errors obtained during training and employing a distance-based similarity search in the model latent space. Our method, which we call LTAU, efficiently estimates the full probability distribution function (PDF) of errors for any test point using the logged training errors, achieving speeds that are 2--3 orders of magnitudes faster than typical ensemble methods and allowing it to be used for tasks where training or evaluating multiple models would be infeasible. We apply LTAU towards estimating parametric uncertainty in atomistic force fields (LTAU-FF), demonstrating that its improved ensemble diversity produces well-calibrated confidence intervals and predicts errors that correlate strongly with the true errors for data near the training domain. Furthermore, we show that the errors predicted by LTAU-FF can be used in practical applications for detecting out-of-domain data, tuning model performance, and predicting failure during simulations. We believe that LTAU will be a valuable tool for uncertainty quantification (UQ) in atomistic force fields and is a promising method that should be further explored in other domains of machine learning.
Submission history
From: Joshua Vita [view email][v1] Thu, 1 Feb 2024 18:50:42 UTC (15,970 KB)
[v2] Wed, 22 May 2024 15:23:36 UTC (5,982 KB)
Current browse context:
cs.LG
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.