Computer Science > Sound
[Submitted on 29 Jan 2024]
Title:Continuous Target Speech Extraction: Enhancing Personalized Diarization and Extraction on Complex Recordings
View PDF HTML (experimental)Abstract:Target speaker extraction (TSE) aims to extract the target speaker's voice from the input mixture. Previous studies have concentrated on high-overlapping scenarios. However, real-world applications usually meet more complex scenarios like variable speaker overlapping and target speaker absence. In this paper, we introduces a framework to perform continuous TSE (C-TSE), comprising a target speaker voice activation detection (TSVAD) and a TSE model. This framework significantly improves TSE performance on similar speakers and enhances personalization, which is lacking in traditional diarization methods. In detail, unlike conventional TSVAD deployed to refine the diarization results, the proposed Attention-target speaker voice activation detection (A-TSVAD) directly generates timestamps of the target speaker. We also explore some different integration methods of A-TSVAD and TSE by comparing the cascaded and parallel methods. The framework's effectiveness is assessed using a range of metrics, including diarization and enhancement metrics. Our experiments demonstrate that A-TSVAD outperforms conventional methods in reducing diarization errors. Furthermore, the integration of A-TSVAD and TSE in a sequential cascaded manner further enhances extraction accuracy.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.