Computer Science > Computation and Language
[Submitted on 29 Jan 2024]
Title:E-EVAL: A Comprehensive Chinese K-12 Education Evaluation Benchmark for Large Language Models
View PDFAbstract:With the accelerating development of Large Language Models (LLMs), many LLMs are beginning to be used in the Chinese K-12 education domain. The integration of LLMs and education is getting closer and closer, however, there is currently no benchmark for evaluating LLMs that focuses on the Chinese K-12 education domain. Therefore, there is an urgent need for a comprehensive natural language processing benchmark to accurately assess the capabilities of various LLMs in the Chinese K-12 education domain. To address this, we introduce the E-EVAL, the first comprehensive evaluation benchmark specifically designed for the Chinese K-12 education field. The E-EVAL consists of 4,351 multiple-choice questions at the primary, middle, and high school levels across a wide range of subjects, including Chinese, English, Politics, History, Ethics, Physics, Chemistry, Mathematics, and Geography. We conducted a comprehensive evaluation of E-EVAL on advanced LLMs, including both English-dominant and Chinese-dominant models. Findings show that Chinese-dominant models perform well compared to English-dominant models, with many scoring even above the GPT 4.0. However, almost all models perform poorly in complex subjects such as mathematics. We also found that most Chinese-dominant LLMs did not achieve higher scores at the primary school level compared to the middle school level. We observe that the mastery of higher-order knowledge by the model does not necessarily imply the mastery of lower-order knowledge as well. Additionally, the experimental results indicate that the Chain of Thought (CoT) technique is effective only for the challenging science subjects, while Few-shot prompting is more beneficial for liberal arts subjects. With E-EVAL, we aim to analyze the strengths and limitations of LLMs in educational applications, and to contribute to the progress and development of Chinese K-12 education and LLMs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.