Computer Science > Machine Learning
[Submitted on 28 Jan 2024]
Title:Evaluating Echo State Network for Parkinson's Disease Prediction using Voice Features
View PDFAbstract:Parkinson's disease (PD) is a debilitating neurological disorder that necessitates precise and early diagnosis for effective patient care. This study aims to develop a diagnostic model capable of achieving both high accuracy and minimizing false negatives, a critical factor in clinical practice. Given the limited training data, a feature selection strategy utilizing ANOVA is employed to identify the most informative features. Subsequently, various machine learning methods, including Echo State Networks (ESN), Random Forest, k-nearest Neighbors, Support Vector Classifier, Extreme Gradient Boosting, and Decision Tree, are employed and thoroughly evaluated. The statistical analyses of the results highlight ESN's exceptional performance, showcasing not only superior accuracy but also the lowest false negative rate among all methods. Consistently, statistical data indicates that the ESN method consistently maintains a false negative rate of less than 8% in 83% of cases. ESN's capacity to strike a delicate balance between diagnostic precision and minimizing misclassifications positions it as an exemplary choice for PD diagnosis, especially in scenarios characterized by limited data. This research marks a significant step towards more efficient and reliable PD diagnosis, with potential implications for enhanced patient outcomes and healthcare dynamics.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.