Computer Science > Information Theory
[Submitted on 22 Jan 2024]
Title:Rate-Distortion-Perception Tradeoff Based on the Conditional-Distribution Perception Measure
View PDFAbstract:We study the rate-distortion-perception (RDP) tradeoff for a memoryless source model in the asymptotic limit of large block-lengths. Our perception measure is based on a divergence between the distributions of the source and reconstruction sequences conditioned on the encoder output, which was first proposed in [1], [2]. We consider the case when there is no shared randomness between the encoder and the decoder. For the case of discrete memoryless sources we derive a single-letter characterization of the RDP function, thus settling a problem that remains open for the marginal metric introduced in Blau and Michaeli [3] (with no shared randomness). Our achievability scheme is based on lossy source coding with a posterior reference map proposed in [4]. For the case of continuous valued sources under squared error distortion measure and squared quadratic Wasserstein perception measure we also derive a single-letter characterization and show that a noise-adding mechanism at the decoder suffices to achieve the optimal representation. For the case of zero perception loss, we show that our characterization interestingly coincides with the results for the marginal metric derived in [5], [6] and again demonstrate that zero perception loss can be achieved with a $3$-dB penalty in the minimum distortion. Finally we specialize our results to the case of Gaussian sources. We derive the RDP function for vector Gaussian sources and propose a waterfilling type solution. We also partially characterize the RDP function for a mixture of vector Gaussians.
Submission history
From: Sadaf Salehkalaibar Dr [view email][v1] Mon, 22 Jan 2024 18:49:56 UTC (154 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.