Computer Science > Machine Learning
[Submitted on 21 Jan 2024]
Title:Enabling clustering algorithms to detect clusters of varying densities through scale-invariant data preprocessing
View PDF HTML (experimental)Abstract:In this paper, we show that preprocessing data using a variant of rank transformation called 'Average Rank over an Ensemble of Sub-samples (ARES)' makes clustering algorithms robust to data representation and enable them to detect varying density clusters. Our empirical results, obtained using three most widely used clustering algorithms-namely KMeans, DBSCAN, and DP (Density Peak)-across a wide range of real-world datasets, show that clustering after ARES transformation produces better and more consistent results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.