Computer Science > Neural and Evolutionary Computing
[Submitted on 26 Dec 2023]
Title:Curriculum Design Helps Spiking Neural Networks to Classify Time Series
View PDF HTML (experimental)Abstract:Spiking Neural Networks (SNNs) have a greater potential for modeling time series data than Artificial Neural Networks (ANNs), due to their inherent neuron dynamics and low energy consumption. However, it is difficult to demonstrate their superiority in classification accuracy, because current efforts mainly focus on designing better network structures. In this work, enlighten by brain-inspired science, we find that, not only the structure but also the learning process should be human-like. To achieve this, we investigate the power of Curriculum Learning (CL) on SNNs by designing a novel method named CSNN with two theoretically guaranteed mechanisms: The active-to-dormant training order makes the curriculum similar to that of human learning and suitable for spiking neurons; The value-based regional encoding makes the neuron activity to mimic the brain memory when learning sequential data. Experiments on multiple time series sources including simulated, sensor, motion, and healthcare demonstrate that CL has a more positive effect on SNNs than ANNs with about twice the accuracy change, and CSNN can increase about 3% SNNs' accuracy by improving network sparsity, neuron firing status, anti-noise ability, and convergence speed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.