Computer Science > Human-Computer Interaction
[Submitted on 18 Jan 2024]
Title:Self context-aware emotion perception on human-robot interaction
View PDF HTML (experimental)Abstract:Emotion recognition plays a crucial role in various domains of human-robot interaction. In long-term interactions with humans, robots need to respond continuously and accurately, however, the mainstream emotion recognition methods mostly focus on short-term emotion recognition, disregarding the context in which emotions are perceived. Humans consider that contextual information and different contexts can lead to completely different emotional expressions. In this paper, we introduce self context-aware model (SCAM) that employs a two-dimensional emotion coordinate system for anchoring and re-labeling distinct emotions. Simultaneously, it incorporates its distinctive information retention structure and contextual loss. This approach has yielded significant improvements across audio, video, and multimodal. In the auditory modality, there has been a notable enhancement in accuracy, rising from 63.10% to 72.46%. Similarly, the visual modality has demonstrated improved accuracy, increasing from 77.03% to 80.82%. In the multimodal, accuracy has experienced an elevation from 77.48% to 78.93%. In the future, we will validate the reliability and usability of SCAM on robots through psychology experiments.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.