Physics > Computational Physics
[Submitted on 19 Jan 2024 (v1), last revised 17 Oct 2024 (this version, v2)]
Title:Generative Model for Constructing Reaction Path from Initial to Final States
View PDF HTML (experimental)Abstract:Mapping the chemical reaction pathways and their corresponding activation barriers is a significant challenge in molecular simulation. Given the inherent complexities of 3D atomic geometries, even generating an initial guess of these paths can be difficult for humans. This paper presents an innovative approach that utilizes neural networks to generate initial guesses for reaction pathways based on the initial state and learning from a database of low-energy transition paths. The proposed method is initiated by inputting the coordinates of the initial state, followed by progressive alterations to its structure. This iterative process culminates in the generation of the guess reaction path and the coordinates of the final state. The method does not require one-the-fly computation of the actual potential energy surface, and is therefore fast-acting. The application of this geometry-based method extends to complex reaction pathways illustrated by organic reactions. Training was executed on the Transition1x dataset of organic reaction pathways. The results revealed the generation of reactions that bore substantial similarities with the test set of chemical reaction paths. The method's flexibility allows for reactions to be generated either to conform to predetermined conditions or in a randomized manner.
Submission history
From: Akihide Hayashi [view email][v1] Fri, 19 Jan 2024 14:32:50 UTC (10,689 KB)
[v2] Thu, 17 Oct 2024 08:15:27 UTC (4,868 KB)
Current browse context:
physics.comp-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.