Mathematics > Optimization and Control
[Submitted on 17 Jan 2024 (v1), last revised 5 Dec 2024 (this version, v2)]
Title:Algebraic solution of project scheduling problems with temporal constraints
View PDF HTML (experimental)Abstract:New solutions for problems in optimal scheduling of activities in a project under temporal constraints are developed in the framework of tropical algebra which deals with the theory and application of algebraic systems with idempotent operations. We start with a constrained tropical optimization problem that has an objective function represented as a vector form given by an arbitrary matrix, and that can be solved analytically in a closed but somewhat complicated form. We examine a special case of the problem when the objective function is given by a matrix of unit rank, and show that the solution can be sufficiently refined in this case, which results in an essentially simplified analytical form and reduced computational complexity of the solution. We exploit the obtained result to find complete solutions of project scheduling problems to minimize the project makespan and the maximum absolute deviation of start times of activities under temporal constraints. The constraints under consideration include ``start--start'', ``start--finish'' and ``finish--start'' precedence relations, release times, release deadlines and completion deadlines for activities. As an application, we consider optimal scheduling problems of a vaccination project in a medical centre.
Submission history
From: Nikolai Krivulin [view email][v1] Wed, 17 Jan 2024 13:57:26 UTC (19 KB)
[v2] Thu, 5 Dec 2024 00:53:24 UTC (20 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.