Computer Science > Computers and Society
[Submitted on 17 Jan 2024]
Title:Your blush gives you away: detecting hidden mental states with remote photoplethysmography and thermal imaging
View PDFAbstract:Multimodal emotion recognition techniques are increasingly essential for assessing mental states. Image-based methods, however, tend to focus predominantly on overt visual cues and often overlook subtler mental state changes. Psychophysiological research has demonstrated that HR and skin temperature are effective in detecting ANS activities, thereby revealing these subtle changes. However, traditional HR tools are generally more costly and less portable, while skin temperature analysis usually necessitates extensive manual processing. Advances in remote-PPG and automatic thermal ROI detection algorithms have been developed to address these issues, yet their accuracy in practical applications remains limited. This study aims to bridge this gap by integrating r-PPG with thermal imaging to enhance prediction performance. Ninety participants completed a 20-minute questionnaire to induce cognitive stress, followed by watching a film aimed at eliciting moral elevation. The results demonstrate that the combination of r-PPG and thermal imaging effectively detects emotional shifts. Using r-PPG alone, the prediction accuracy was 77% for cognitive stress and 61% for moral elevation, as determined by SVM. Thermal imaging alone achieved 79% accuracy for cognitive stress and 78% for moral elevation, utilizing a RF algorithm. An early fusion strategy of these modalities significantly improved accuracies, achieving 87% for cognitive stress and 83% for moral elevation using RF. Further analysis, which utilized statistical metrics and explainable machine learning methods including SHAP, highlighted key features and clarified the relationship between cardiac responses and facial temperature variations. Notably, it was observed that cardiovascular features derived from r-PPG models had a more pronounced influence in data fusion, despite thermal imaging's higher predictive accuracy in unimodal analysis.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.