Computer Science > Neural and Evolutionary Computing
[Submitted on 18 Jan 2024]
Title:A Comparative Analysis on Metaheuristic Algorithms Based Vision Transformer Model for Early Detection of Alzheimer's Disease
View PDF HTML (experimental)Abstract:A number of life threatening neuro-degenerative disorders had degraded the quality of life for the older generation in particular. Dementia is one such symptom which may lead to a severe condition called Alzheimer's disease if not detected at an early stage. It has been reported that the progression of such disease from a normal stage is due to the change in several parameters inside the human brain. In this paper, an innovative metaheuristic algorithms based ViT model has been proposed for the identification of dementia at different stage. A sizeable number of test data have been utilized for the validation of the proposed scheme. It has also been demonstrated that our model exhibits superior performance in terms of accuracy, precision, recall as well as F1-score.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.