Computer Science > Databases
[Submitted on 17 Jan 2024]
Title:XTable in Action: Seamless Interoperability in Data Lakes
View PDF HTML (experimental)Abstract:Contemporary approaches to data management are increasingly relying on unified analytics and AI platforms to foster collaboration, interoperability, seamless access to reliable data, and high performance. Data Lakes featuring open standard table formats such as Delta Lake, Apache Hudi, and Apache Iceberg are central components of these data architectures. Choosing the right format for managing a table is crucial for achieving the objectives mentioned above. The challenge lies in selecting the best format, a task that is onerous and can yield temporary results, as the ideal choice may shift over time with data growth, evolving workloads, and the competitive development of table formats and processing engines. Moreover, restricting data access to a single format can hinder data sharing resulting in diminished business value over the long term. The ability to seamlessly interoperate between formats and with negligible overhead can effectively address these challenges. Our solution in this direction is an innovative omni-directional translator, XTable, that facilitates writing data in one format and reading it in any format, thus achieving the desired format interoperability. In this work, we demonstrate the effectiveness of XTable through application scenarios inspired by real-world use cases.
Submission history
From: Jesús Camacho-Rodríguez [view email][v1] Wed, 17 Jan 2024 22:18:00 UTC (506 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.