Computer Science > Human-Computer Interaction
[Submitted on 16 Jan 2024]
Title:TrajVis: a visual clinical decision support system to translate artificial intelligence trajectory models in the precision management of chronic kidney disease
View PDFAbstract:Objective: Our objective is to develop and validate TrajVis, an interactive tool that assists clinicians in using artificial intelligence (AI) models to leverage patients' longitudinal electronic medical records (EMR) for personalized precision management of chronic disease progression. Methods: We first perform requirement analysis with clinicians and data scientists to determine the visual analytics tasks of the TrajVis system as well as its design and functionalities. A graph AI model for chronic kidney disease (CKD) trajectory inference named DEPOT is used for system development and demonstration. TrajVis is implemented as a full-stack web application with synthetic EMR data derived from the Atrium Health Wake Forest Baptist Translational Data Warehouse and the Indiana Network for Patient Care research database. A case study with a nephrologist and a user experience survey of clinicians and data scientists are conducted to evaluate the TrajVis system. Results: The TrajVis clinical information system is composed of four panels: the Patient View for demographic and clinical information, the Trajectory View to visualize the DEPOT-derived CKD trajectories in latent space, the Clinical Indicator View to elucidate longitudinal patterns of clinical features and interpret DEPOT predictions, and the Analysis View to demonstrate personal CKD progression trajectories. System evaluations suggest that TrajVis supports clinicians in summarizing clinical data, identifying individualized risk predictors, and visualizing patient disease progression trajectories, overcoming the barriers of AI implementation in healthcare. Conclusion: TrajVis bridges the gap between the fast-growing AI/ML modeling and the clinical use of such models for personalized and precision management of chronic diseases.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.