Mathematics > Numerical Analysis
[Submitted on 14 Jan 2024 (v1), last revised 29 Oct 2024 (this version, v2)]
Title:How sharp are error bounds? --lower bounds on quadrature worst-case errors for analytic functions
View PDF HTML (experimental)Abstract:Numerical integration over the real line for analytic functions is studied. Our main focus is on the sharpness of the error bounds. We first derive two general lower estimates for the worst-case integration error, and then apply these to establish lower bounds for various quadrature rules. These bounds turn out to be either novel or improve upon existing results, leading to lower bounds that closely match upper bounds for various formulas. Specifically, for the suitably truncated trapezoidal rule, we improve upon general lower bounds on the worst-case error obtained by Sugihara [\textit{Numer. Math.}, 75 (1997), pp.~379--395] and provide exceptionally sharp lower bounds apart from a polynomial factor, and in particular show that the worst-case error for the trapezoidal rule by Sugihara is not improvable by more than a polynomial factor. Additionally, our research reveals a discrepancy between the error decay of the trapezoidal rule and Sugihara's lower bound for general numerical integration rules, introducing a new open problem. Moreover, Gauss--Hermite quadrature is proven sub-optimal under the decay conditions on integrands we consider, a result not deducible from upper-bound arguments alone. Furthermore, to establish the near-optimality of the suitably scaled Gauss--Legendre and Clenshaw--Curtis quadratures, we generalize a recent result of Trefethen [\textit{SIAM Rev.}, 64 (2022), pp.~132--150] for the upper error bounds in terms of the decay conditions.
Submission history
From: Yoshihito Kazashi [view email][v1] Sun, 14 Jan 2024 04:09:42 UTC (45 KB)
[v2] Tue, 29 Oct 2024 09:16:37 UTC (46 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.