Computer Science > Hardware Architecture
[Submitted on 8 Jan 2024]
Title:MX: Enhancing RISC-V's Vector ISA for Ultra-Low Overhead, Energy-Efficient Matrix Multiplication
View PDFAbstract:Dense Matrix Multiplication (MatMul) is arguably one of the most ubiquitous compute-intensive kernels, spanning linear algebra, DSP, graphics, and machine learning applications. Thus, MatMul optimization is crucial not only in high-performance processors but also in embedded low-power platforms. Several Instruction Set Architectures (ISAs) have recently included matrix extensions to improve MatMul performance and efficiency at the cost of added matrix register files and units. In this paper, we propose Matrix eXtension (MX), a lightweight approach that builds upon the open-source RISC-V Vector (RVV) ISA to boost MatMul energy efficiency. Instead of adding expensive dedicated hardware, MX uses the pre-existing vector register file and functional units to create a hybrid vector/matrix engine at a negligible area cost (< 3%), which comes from a compact near-FPU tile buffer for higher data reuse, and no clock frequency overhead. We implement MX on a compact and highly energy-optimized RVV processor and evaluate it in both a Dual- and 64-Core cluster in a 12-nm technology node. MX boosts the Dual-Core's energy efficiency by 10% for a double-precision 64x64x64 matrix multiplication with the same FPU utilization (~97%) and by 25% on the 64-Core cluster for the same benchmark on 32-bit data, with a 56% performance gain.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.