Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Jan 2024 (v1), last revised 2 Oct 2024 (this version, v2)]
Title:ENSTRECT: A Stage-based Approach to 2.5D Structural Damage Detection
View PDF HTML (experimental)Abstract:To effectively assess structural damage, it is essential to localize the instances of damage in the physical world of a civil structure. ENSTRECT is a stage-based approach designed to accomplish 2.5D structural damage detection. The method requires an image collection, the relative orientation, and a point cloud. Using these inputs, surface damages are segmented at the image level and then mapped into the point cloud space, resulting in a segmented point cloud. To enable further quantitative analyses, the segmented point cloud is transformed into measurable damage instances: cracks are extracted by contracting the clustered point cloud into a corresponding medial axis. For areal damages, such as spalling and corrosion, a procedure is proposed to compute the bounding polygon based on PCA and alpha shapes. With a localization tolerance of 4cm, ENSTRECT can achieve IoUs of over 90% for cracks, 82% for corrosion, and 41% for spalling. Detection at the instance level yields an AP50 of about 45% (cracks, spalling) and 56% (corrosion).
Submission history
From: Christian Benz [view email][v1] Sat, 6 Jan 2024 20:39:20 UTC (4,055 KB)
[v2] Wed, 2 Oct 2024 20:24:14 UTC (3,958 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.