Computer Science > Machine Learning
[Submitted on 8 Jan 2024]
Title:AA-DLADMM: An Accelerated ADMM-based Framework for Training Deep Neural Networks
View PDF HTML (experimental)Abstract:Stochastic gradient descent (SGD) and its many variants are the widespread optimization algorithms for training deep neural networks. However, SGD suffers from inevitable drawbacks, including vanishing gradients, lack of theoretical guarantees, and substantial sensitivity to input. The Alternating Direction Method of Multipliers (ADMM) has been proposed to address these shortcomings as an effective alternative to the gradient-based methods. It has been successfully employed for training deep neural networks. However, ADMM-based optimizers have a slow convergence rate. This paper proposes an Anderson Acceleration for Deep Learning ADMM (AA-DLADMM) algorithm to tackle this drawback. The main intention of the AA-DLADMM algorithm is to employ Anderson acceleration to ADMM by considering it as a fixed-point iteration and attaining a nearly quadratic convergence rate. We verify the effectiveness and efficiency of the proposed AA-DLADMM algorithm by conducting extensive experiments on four benchmark datasets contrary to other state-of-the-art optimizers.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.