Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 5 Jan 2024]
Title:MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated Convolution for Image Compressive Sensing (CS)
View PDFAbstract:Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods. To address the computational challenges of CS reconstruction, our objective is to develop an interpretable and concise neural network model for reconstructing natural images using CS. We achieve this by mapping one step of the iterative shrinkage thresholding algorithm (ISTA) to a deep network block, representing one iteration of ISTA. To enhance learning ability and incorporate structural diversity, we integrate aggregated residual transformations (ResNeXt) and squeeze-and-excitation (SE) mechanisms into the ISTA block. This block serves as a deep equilibrium layer, connected to a semi-tensor product network (STP-Net) for convenient sampling and providing an initial reconstruction. The resulting model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods. It significantly reduces storage requirements compared to deep unrolling methods, using only one iteration block instead of multiple iterations. Unlike deep unrolling models, MsDC-DEQ-Net can be iteratively used, gradually improving reconstruction accuracy while considering computation trade-offs. Additionally, the model benefits from multi-scale dilated convolutions, further enhancing performance.
Submission history
From: Richard Dansereau [view email][v1] Fri, 5 Jan 2024 16:25:58 UTC (1,157 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.