Computer Science > Computers and Society
[Submitted on 2 Jan 2024]
Title:Generative AI is already widespread in the public sector
View PDF HTML (experimental)Abstract:Generative AI has the potential to transform how public services are delivered by enhancing productivity and reducing time spent on bureaucracy. Furthermore, unlike other types of artificial intelligence, it is a technology that has quickly become widely available for bottom-up adoption: essentially anyone can decide to make use of it in their day to day work. But to what extent is generative AI already in use in the public sector? Our survey of 938 public service professionals within the UK (covering education, health, social work and emergency services) seeks to answer this question. We find that use of generative AI systems is already widespread: 45% of respondents were aware of generative AI usage within their area of work, while 22% actively use a generative AI system. Public sector professionals were positive about both current use of the technology and its potential to enhance their efficiency and reduce bureaucratic workload in the future. For example, those working in the NHS thought that time spent on bureaucracy could drop from 50% to 30% if generative AI was properly exploited, an equivalent of one day per week (an enormous potential impact). Our survey also found a high amount of trust (61%) around generative AI outputs, and a low fear of replacement (16%). While respondents were optimistic overall, areas of concern included feeling like the UK is missing out on opportunities to use AI to improve public services (76%), and only a minority of respondents (32%) felt like there was clear guidance on generative AI usage in their workplaces. In other words, it is clear that generative AI is already transforming the public sector, but uptake is happening in a disorganised fashion without clear guidelines. The UK's public sector urgently needs to develop more systematic methods for taking advantage of the technology.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.