Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 16 Dec 2019]
Title:Zoom in to where it matters: a hierarchical graph based model for mammogram analysis
View PDFAbstract:In clinical practice, human radiologists actually review medical images with high resolution monitors and zoom into region of interests (ROIs) for a close-up examination. Inspired by this observation, we propose a hierarchical graph neural network to detect abnormal lesions from medical images by automatically zooming into ROIs. We focus on mammogram analysis for breast cancer diagnosis for this study. Our proposed network consist of two graph attention networks performing two tasks: (1) node classification to predict whether to zoom into next level; (2) graph classification to classify whether a mammogram is normal/benign or malignant. The model is trained and evaluated on INbreast dataset and we obtain comparable AUC with state-of-the-art methods.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.