Statistics > Machine Learning
[Submitted on 27 May 2019 (v1), last revised 4 Oct 2019 (this version, v2)]
Title:Scaleable input gradient regularization for adversarial robustness
View PDFAbstract:In this work we revisit gradient regularization for adversarial robustness with some new ingredients. First, we derive new per-image theoretical robustness bounds based on local gradient information. These bounds strongly motivate input gradient regularization. Second, we implement a scaleable version of input gradient regularization which avoids double backpropagation: adversarially robust ImageNet models are trained in 33 hours on four consumer grade GPUs. Finally, we show experimentally and through theoretical certification that input gradient regularization is competitive with adversarial training. Moreover we demonstrate that gradient regularization does not lead to gradient obfuscation or gradient masking.
Submission history
From: Chris Finlay [view email][v1] Mon, 27 May 2019 19:40:52 UTC (116 KB)
[v2] Fri, 4 Oct 2019 14:12:34 UTC (530 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.