Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 27 Dec 2017]
Title:Analysing the Performance of GPU Hash Tables for State Space Exploration
View PDFAbstract:In the past few years, General Purpose Graphics Processors (GPUs) have been used to significantly speed up numerous applications. One of the areas in which GPUs have recently led to a significant speed-up is model checking. In model checking, state spaces, i.e., large directed graphs, are explored to verify whether models satisfy desirable properties. GPUexplore is a GPU-based model checker that uses a hash table to efficiently keep track of already explored states. As a large number of states is discovered and stored during such an exploration, the hash table should be able to quickly handle many inserts and queries concurrently. In this paper, we experimentally compare two different hash tables optimised for the GPU, one being the GPUexplore hash table, and the other using Cuckoo hashing. We compare the performance of both hash tables using random and non-random data obtained from model checking experiments, to analyse the applicability of the two hash tables for state space exploration. We conclude that Cuckoo hashing is three times faster than GPUexplore hashing for random data, and that Cuckoo hashing is five to nine times faster for non-random data. This suggests great potential to further speed up GPUexplore in the near future.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Wed, 27 Dec 2017 05:14:23 UTC (211 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.