Computer Science > Systems and Control
[Submitted on 29 Jun 2017 (v1), last revised 20 Jul 2017 (this version, v2)]
Title:The Modified Optimal Velocity Model: Stability Analyses and Design Guidelines
View PDFAbstract:Reaction delays are important in determining the qualitative dynamical properties of a platoon of vehicles traveling on a straight road. In this paper, we investigate the impact of delayed feedback on the dynamics of the Modified Optimal Velocity Model (MOVM). Specifically, we analyze the MOVM in three regimes -- no delay, small delay and arbitrary delay. In the absence of reaction delays, we show that the MOVM is locally stable. For small delays, we then derive a sufficient condition for the MOVM to be locally stable. Next, for an arbitrary delay, we derive the necessary and sufficient condition for the local stability of the MOVM. We show that the traffic flow transits from the locally stable to the locally unstable regime via a Hopf bifurcation. We also derive the necessary and sufficient condition for non-oscillatory convergence and characterize the rate of convergence of the MOVM. These conditions help ensure smooth traffic flow, good ride quality and quick equilibration to the uniform flow. Further, since a Hopf bifurcation results in the emergence of limit cycles, we provide an analytical framework to characterize the type of the Hopf bifurcation and the asymptotic orbital stability of the resulting non-linear oscillations. Finally, we corroborate our analyses using stability charts, bifurcation diagrams, numerical computations and simulations conducted using MATLAB.
Submission history
From: Gopal Krishna Kamath [view email][v1] Thu, 29 Jun 2017 12:16:04 UTC (679 KB)
[v2] Thu, 20 Jul 2017 11:37:57 UTC (678 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.