Mathematical Physics
[Submitted on 5 May 2015 (v1), last revised 22 Feb 2016 (this version, v3)]
Title:A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model
View PDFAbstract:In this paper we consider the Grioli-Koiter-Mindlin-Toupin linear isotropic indeterminate couple stress model. Our main aim is to show that, up to now, the boundary conditions have not been completely understood for this model. As it turns out, and to our own surprise, restricting the well known boundary conditions stemming from the strain gradient or second gradient models to the particular case of the indeterminate couple stress model, does not always reduce to the Grioli-Koiter-Mindlin-Toupin set of accepted boundary conditions. We present, therefore, a proof of the fact that when specific "mixed" kinematical and traction boundary conditions are assigned on the boundary, no "a priori" equivalence can be established between Mindlin's and our approach.
Submission history
From: Ionel-Dumitrel Ghiba [view email][v1] Tue, 5 May 2015 13:08:00 UTC (53 KB)
[v2] Fri, 19 Feb 2016 11:09:42 UTC (58 KB)
[v3] Mon, 22 Feb 2016 11:36:07 UTC (58 KB)
Current browse context:
math-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.