Computer Science > Computer Science and Game Theory
[Submitted on 15 Oct 2014 (v1), last revised 24 Sep 2015 (this version, v3)]
Title:Making the Best of Limited Memory in Multi-Player Discounted Sum Games
View PDFAbstract:In this paper, we establish the existence of optimal bounded memory strategy profiles in multi-player discounted sum games. We introduce a non-deterministic approach to compute optimal strategy profiles with bounded memory. Our approach can be used to obtain optimal rewards in a setting where a powerful player selects the strategies of all players for Nash and leader equilibria, where in leader equilibria the Nash condition is waived for the strategy of this powerful player. The resulting strategy profiles are optimal for this player among all strategy profiles that respect the given memory bound, and the related decision problem is NP-complete. We also provide simple examples, which show that having more memory will improve the optimal strategy profile, and that sufficient memory to obtain optimal strategy profiles cannot be inferred from the structure of the game.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Wed, 15 Oct 2014 18:20:42 UTC (21 KB)
[v2] Thu, 30 Jul 2015 15:04:37 UTC (21 KB)
[v3] Thu, 24 Sep 2015 01:53:44 UTC (24 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.