Computer Science > Data Structures and Algorithms
[Submitted on 14 Feb 2014 (v1), last revised 17 Sep 2015 (this version, v2)]
Title:A Unifying Model for Representing Time-Varying Graphs
View PDFAbstract:Graph-based models form a fundamental aspect of data representation in Data Sciences and play a key role in modeling complex networked systems. In particular, recently there is an ever-increasing interest in modeling dynamic complex networks, i.e. networks in which the topological structure (nodes and edges) may vary over time. In this context, we propose a novel model for representing finite discrete Time-Varying Graphs (TVGs), which are typically used to model dynamic complex networked systems. We analyze the data structures built from our proposed model and demonstrate that, for most practical cases, the asymptotic memory complexity of our model is in the order of the cardinality of the set of edges. Further, we show that our proposal is an unifying model that can represent several previous (classes of) models for dynamic networks found in the recent literature, which in general are unable to represent each other. In contrast to previous models, our proposal is also able to intrinsically model cyclic (i.e. periodic) behavior in dynamic networks. These representation capabilities attest the expressive power of our proposed unifying model for TVGs. We thus believe our unifying model for TVGs is a step forward in the theoretical foundations for data analysis of complex networked systems.
Submission history
From: Artur Ziviani [view email] [via CCSD proxy][v1] Fri, 14 Feb 2014 15:10:16 UTC (601 KB)
[v2] Thu, 17 Sep 2015 14:17:51 UTC (160 KB)
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.