Multiobjective Automatic Parameter Calibration of a Hydrological Model
<p>Probability distributions of simulated binary crossover (SBX) with three crossover distribution index (C<sub>DI</sub>) values: C<sub>DI</sub> = 0.5 (solid gray line), C<sub>DI</sub> = 2.0 (dotted black line), and C<sub>DI</sub> = 20 (dashed black line).</p> "> Figure 2
<p>Changes in crossover distribution index (C<sub>DI</sub>) using the two parameter-setting-free (PSF) methods over generations when the number of generations (NGEN) = 500.</p> "> Figure 3
<p>Schematic description of the modified hydrological model (HYMOD).</p> "> Figure 4
<p>Measurements in the Leaf River basin: (<b>a</b>) daily hyetograph; and (<b>b</b>) hydrograph.</p> "> Figure 5
<p>Flow chart of the application results section.</p> "> Figure 6
<p>Three representative plots showing 1000 randomly generated points in the two-objective space: (<b>a</b>) Nash–Sutcliffe Measure (NSF) versus Total Mean Squared Error (TMSE); (<b>b</b>) TMSE versus Three Peak Flow Difference (TPFD); (<b>c</b>) Percent Bias (PB) versus TPFD; and (<b>d</b>) NSF versus PB.</p> "> Figure 6 Cont.
<p>Three representative plots showing 1000 randomly generated points in the two-objective space: (<b>a</b>) Nash–Sutcliffe Measure (NSF) versus Total Mean Squared Error (TMSE); (<b>b</b>) TMSE versus Three Peak Flow Difference (TPFD); (<b>c</b>) Percent Bias (PB) versus TPFD; and (<b>d</b>) NSF versus PB.</p> "> Figure 7
<p>The 511 global Pareto solutions (black diamonds) identified from the non-dominated sorting of 5400 Pareto solutions (magenta squares) obtained from the cases of combinations of NGEN = 100, 500, and 1000 and NPOP = 30, 50, and 100.</p> "> Figure 8
<p>Comparison of the Pareto optimal solutions obtained by using static and variable approaches: (<b>a</b>) Pareto solutions identified by the two approaches, each of which was run independently; (<b>b</b>) comparison of the two global Pareto fronts, where each global Pareto front was extracted independently; and (<b>c</b>) global Pareto fronts identified by the two best cases: Crate = 0.6 and Approach 3, represented by the x symbol, and Crate = 0.9 and Approach 4, indicated by the cross symbol.</p> "> Figure 9
<p>Normalized parameter ranges of the global Pareto solutions obtained by the variable balancing approaches.</p> "> Figure 10
<p>Global Pareto front region covered by Groups 1 and 2 with three selected solutions for the hydrograph: Group 1 has two quick flow tanks (<span class="html-italic">n</span> = 2, normalized <span class="html-italic">n</span> = 0.5), and Group 2 has a single quick flow tank (<span class="html-italic">n</span> = 1).</p> "> Figure 11
<p>Observed and simulated hydrographs obtained by using three representative global Pareto solutions. The first has a percent bias (PB) of 3.04 × 10<sup>−8</sup>% and three peak flow difference (TPFD) of 9.07 mm/day (simulated streamflow 1), the second has a PB of 29.71% and TPFD of 3.96 mm/day (simulated streamflow 2), and the third has a PB of 1.87% and TPFD of 8.35 mm/day (simulated streamflow 3).</p> "> Figure 12
<p>Closer view of the hydrograph of the three peak flows in <a href="#water-09-00187-f011" class="html-fig">Figure 11</a>: (<b>a</b>) Peak 1; (<b>b</b>) Peak 2; and (<b>c</b>) Peak 3.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Objective Selection Process
2.2. Multiobjective Automatic Parameter Calibration Model
2.3. NSGA-II with SBX and PM
2.4. Variable Exploration and Exploitation Balancing Approaches
2.5. Performance Metrics
2.6. Modified HYMOD
3. Case Study
4. Application Results
4.1. Numerical Experiment Setup
4.2. Selection of the Appropriate Number of Populatiosn and Generations
4.3. Comparison of the Static and Variable Balancing Approaches
4.4. Calibrated Parameters and Hydrographs
5. Discussion
6. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jakeman, A.J.; Hornberger, G.M. How much complexity is warranted in a rainfall-runoff model? Water Resour. Res. 1993, 29, 2637–2649. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res. 1998, 34, 751–763. [Google Scholar] [CrossRef]
- Zhang, X.; Beeson, P.; Link, R.; Manowitz, D.; Izaurralde, R.C.; Sadeghi, A.; Thomson, A.M.; Sahajpal, R.; Srinivasan, R.; Arnold, J.G. Efficient multi-objective calibration of a computationally intensive hydrologic model with parallel computing software in Python. Environ. Model. Softw. 2013, 46, 208–218. [Google Scholar] [CrossRef]
- Bathurst, J.C.; Kilsby, C.; White, S.; Brandt, C.J.; Thornes, J.B. Modelling the impacts of climate and land-use change on basin hydrology and soil erosion in Mediterranean Europe. In Mediterranean Desertification and Land Use; Brandt, C.J., Thornes, J.B., Eds.; Wiley: Chichester, UK, 1996; pp. 355–387. [Google Scholar]
- Vrugt, J.A.; Gupta, H.V.; Bouten, W.; Sorooshian, S. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Kuczera, G. Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty. Water Resour. Res. 1983, 19, 1151–1162. [Google Scholar] [CrossRef]
- Kuczera, G.; Parent, E. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The metropolis algorithm. J. Hydrol. 1998, 211, 69–85. [Google Scholar] [CrossRef]
- Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Multi-objective global optimization for hydrologic models. J. Hydrol. 1998, 204, 83–97. [Google Scholar] [CrossRef]
- Boyle, D.P.; Gupta, H.V.; Sorooshian, S. Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resour. Res. 2000, 36, 3663–3674. [Google Scholar] [CrossRef]
- Kavetski, D.; Franks, S.W.; Kuczera, G. Confronting input uncertainty in environmental modeling. In Calibration of Watershed Models, Water Science and Application; Duan, Q., Gupta, H.V., Sorooshian, S., Rousseau, A.N., Turcotte, R., Eds.; American Geophysical Union: Washington, DC, USA, 2003; Volume 6, pp. 49–68. [Google Scholar]
- Moradkhani, H.; Sorooshian, S.; Gupta, H.V.; Houser, P.R. Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv. Water Resour. 2005, 28, 135–147. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Arsenault, R.; Poulin, A.; Côté, P.; Brissette, F. Comparison of stochastic optimization algorithms in hydrological model calibration. J. Hydrol. Eng. 2013, 19, 1374–1384. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Golberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Eberhart, R.C.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; Volume 1, pp. 39–43.
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Lamb, R. Calibration of a conceptual rainfall-runoff model for flood frequency estimation by continuous simulation. Water Resour. Res. 1999, 35, 3103–3114. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.J. How well does your model fit the data? J. Hydroinform. 2001, 3, 49–55. [Google Scholar]
- Reusser, D.E.; Blume, T.; Schaefli, B.; Zehe, E. Analysing the temporal dynamics of model performance for hydrological models. Hydrol. Earth Syst. Sci. 2009, 13, 999–1018. [Google Scholar] [CrossRef]
- Wöhling, T.; Samaniego, L.; Kumar, R. Evaluating multiple performance criteria to calibrate the distributed hydrological model of the upper Neckar catchment. Environ. Earth Sci. 2013, 69, 453–468. [Google Scholar] [CrossRef]
- Hauduc, H.; Neumann, M.B.; Muschalla, D.; Gamerith, V.; Gillot, S.; Vanrolleghem, P.A. Efficiency criteria for environmental model quality assessment: A review and its application to wastewater treatment. Environ. Model. Softw. 2015, 68, 196–204. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Du, J.; Xie, S.; Xu, Y.; Xu, C.Y.; Singh, V.P. Development and testing of a simple physically-based distributed rainfall–runoff model for storm runoff simulation in humid forested basins. J. Hydrol. 2007, 336, 334–346. [Google Scholar] [CrossRef]
- Efstratiadis, A.; Koutsoyiannis, D. One decade of multi-objective calibration approaches in hydrological modelling: A review. Hydrol. Sci. J. 2010, 55, 58–78. [Google Scholar] [CrossRef]
- Asadzadeh, M.; Tolson, B.A.; Burn, D.H. A new selection metric for multiobjective hydrologic model calibration. Water Resour. Res. 2014, 50, 7082–7099. [Google Scholar] [CrossRef]
- Zhang, R.; Moreira, M.; Corte-Real, J. Multi-objective calibration of the physically based, spatially distributed SHETRAN hydrological model. J. Hydroinform. 2016, 18, 428–445. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Bathurst, J.C.; Sheffield, J.; Vicente, C.; White, S.M.; Romano, N. Modelling Large Basin Hydrology and Sediment Yield with Sparse Data: The Agri Basin, Southern Italy. In Mediterranean Desertification: A Mosaic of Processes and Responses; John Wiley & Sons Ltd.: Chichester, UK, 2002. [Google Scholar]
- Mourato, S.D.J.M. Modelação do Impacte das Alterações Climáticas e do uso do solo nas Bacias Hidrográficas do Alentejo. Ph.D. Dissertation, University of Évora, Évora, Portugal, 2010. [Google Scholar]
- Bathurst, J.C. Predicting Impacts of Land Use and Climate Change on Erosion and Sediment Yield in River Basins using SHETRAN. In Handbook of Erosion Modelling; Wiley-Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Zhang, R.; Santos, C.A.; Moreira, M.; Freire, P.K.; Corte-Real, J. Automatic calibration of the SHETRAN hydrological modelling system using MSCE. Water Resour. Manag. 2013, 27, 4053–4068. [Google Scholar] [CrossRef]
- Zhang, R. Integrated Modelling for Evaluation of Climate Change Impacts on Agricultural Dominated Basin. Ph.D. Thesis, Universidade de Évora, Évora, Portugal, 2015. [Google Scholar]
- Mourato, S.; Moreira, M.; Corte-Real, J. Water availability in southern Portugal for different climate change scenarios subjected to bias correction. J. Urban Environ. Eng. 2014, 8, 109. [Google Scholar] [CrossRef]
- Mourato, S.; Moreira, M.; Corte-Real, J. Water resources impact assessment under climate change scenarios in Mediterranean watersheds. Water Resour. Manag. 2015, 29, 2377–2391. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, R.B. Simulated binary crossover for continuous search space. Complex Syst. 1995, 9, 115–148. [Google Scholar]
- Deb, K.; Goyal, M. A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 1996, 26, 30–45. [Google Scholar]
- Deb, K.; Sundar, J. Reference point based multi-objective optimization using evolutionary algorithms. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8–12 July 2006; pp. 635–642.
- Siegmund, F.; Ng, A.H.; Deb, K. Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, Australia, 10–15 June 2012; pp. 1–8.
- Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [Google Scholar] [CrossRef]
- Dai, X.; Yuan, X.; Zhang, Z. A self-adaptive multi-objective harmony search algorithm based on harmony memory variance. Appl. Soft Comput. 2015, 35, 541–557. [Google Scholar] [CrossRef]
- Sabarinath, P.; Thansekhar, M.R.; Saravanan, R. Multiobjective Optimization Method Based on Adaptive Parameter Harmony Search Algorithm. J. Appl. Math. 2015, 2015, 165601. [Google Scholar] [CrossRef]
- Cuevas, E.; Echavarría, A.; Ramírez-Ortegón, M.A. An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation. Appl. Intell. 2014, 40, 256–272. [Google Scholar] [CrossRef]
- Zheng, F.; Zecchin, A.C.; Maier, H.R.; Simpson, A.R. Comparison of the Searching Behavior of NSGA-II, SAMODE, and Borg MOEAs Applied to Water Distribution System Design Problems. J. Water Resour. Plan. Manag. 2016, 142, 04016017. [Google Scholar] [CrossRef]
- Beldring, S. Multi-criteria validation of a precipitation–runoff model. J. Hydrol. 2002, 257, 189–211. [Google Scholar] [CrossRef]
- Meixner, T.; Bastidas, L.A.; Gupta, H.V.; Bales, R.C. Multicriteria parameter estimation for models of stream chemical composition. Water Resour. Res. 2002, 38, 1027. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Gupta, H.V.; Bastidas, L.A.; Bouten, W.; Sorooshian, S. Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour. Res. 2003, 39, 1214. [Google Scholar] [CrossRef]
- Khu, S.T.; Madsen, H. Multiobjective calibration with Pareto preference ordering: An application to rainfall-runoff model calibration. Water Resour. Res. 2005, 41, W03004. [Google Scholar] [CrossRef]
- Schoups, G.; Addams, C.L.; Gorelick, S.M. Multi-objective calibration of a surface water-groundwater flow model in an irrigated agricultural region: Yaqui Valley, Sonora, Mexico. Hydrol. Earth Syst. Sci. 2005, 2, 2061–2109. [Google Scholar] [CrossRef]
- Schoups, G.; Hopmans, J.W.; Young, C.A.; Vrugt, J.A.; Wallender, W.W. Multi-criteria optimization of a regional spatially-distributed subsurface water flow model. J. Hydrol. 2005, 311, 20–48. [Google Scholar] [CrossRef]
- Engeland, K.; Braud, I.; Gottschalk, L.; Leblois, E. Multi-objective regional modelling. J. Hydrol. 2006, 327, 339–351. [Google Scholar] [CrossRef]
- Tang, Y.; Reed, P.; Wagener, T. How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration? Hydrol. Earth Syst. Sci. 2005, 2, 2465–2520. [Google Scholar] [CrossRef]
- Bekele, E.G.; Nicklow, J.W. Multi-objective automatic calibration of SWAT using NSGA-II. J. Hydrol. 2007, 341, 165–176. [Google Scholar] [CrossRef]
- Confesor, R.B.; Whittaker, G.W. Automatic Calibration of Hydrologic Models with Multi-Objective Evolutionary Algorithm and Pareto Optimization. J. Am. Water Resour. Assoc. 2007, 43, 981–989. [Google Scholar] [CrossRef]
- De Vos, N.J.; Rientjes, T.H.M. Multi-objective performance comparison of an artificial neural network and a conceptual rainfall–runoff model. Hydrol. Sci. J. 2007, 52, 397–413. [Google Scholar] [CrossRef]
- Fenicia, F.; Savenije, H.H.; Matgen, P.; Pfister, L. A comparison of alternative multiobjective calibration strategies for hydrological modeling. Water Resour. Res. 2007, 43, W03434. [Google Scholar] [CrossRef]
- Parajka, J.; Merz, R.; Blöschl, G. Uncertainty and multiple objective calibration in regional water balance modelling: Case study in 320 Austrian catchments. Hydrol. Process. 2007, 21, 435–446. [Google Scholar] [CrossRef]
- Tang, Y.; Reed, P.M.; Kollat, J.B. Parallelization strategies for rapid and robust evolutionary multiobjective optimization in water resources applications. Adv. Water Resour. 2007, 30, 335–353. [Google Scholar] [CrossRef]
- Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. (CSUR) 2003, 35, 268–308. [Google Scholar] [CrossRef]
- Aymerich, F.; Serra, M. Optimization of laminate stacking sequence for maximum buckling load using the ant colony optimization (ACO) metaheuristic. Compos. Part A Appl. Sci. Manuf. 2008, 39, 262–272. [Google Scholar] [CrossRef]
- Yang, X.S. Engineering Optimization: An Introduction with Metaheuristic Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Yang, X.S.; Deb, S.; Fong, S. Metaheuristic algorithms: Optimal balance of intensification and diversification. Appl. Math. Inf. Sci. 2014, 8, 977. [Google Scholar] [CrossRef]
- Wang, Q.; Guidolin, M.; Savic, D.; Kapelan, Z. Two-objective design of benchmark problems of a water distribution system via MOEAs: Towards the best-known approximation of the true Pareto front. J. Water Resour. Plan. Manag. 2014, 141, 04014060. [Google Scholar] [CrossRef]
- Kollat, J.B.; Reed, P.M. Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design. Adv. Water Resour. 2006, 29, 792–807. [Google Scholar] [CrossRef]
- Coello, C.C.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer Science + Business Media: New York, NY, USA, 2007. [Google Scholar]
- Moore, R.J. The probability-distributed principle and runoff production at point and basin scales. Hydrol. Sci. J. 1985, 30, 273–297. [Google Scholar] [CrossRef]
- Moore, R.J. Real-time flood forecasting systems: Perspectives and prospects. In Floods and landslides: Integrated Risk Assessment; Springer: Berlin/Heidelberg, Germany, 1999; pp. 147–189. [Google Scholar]
- Wagener, T.; Boyle, D.P.; Lees, M.J.; Wheater, H.S.; Gupta, H.V.; Sorooshian, S. A framework for development and application of hydrological models. Hydrol. Earth Syst. Sci. 2001, 5, 13–26. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Gupta, H.V.; Bouten, W.; Sorooshian, S. A shuffled complex evolution metropolis algorithm for estimating posterior distribution of watershed model parameters. In Calibration of Watershed Models, Water Science and Application; Duan, Q., Gupta, H.V., Sorooshian, S., Rousseau, A.N., Turcotte, R., Eds.; American Geophysical Union: Washington, DC, USA, 2003; Volume 6, pp. 105–112. [Google Scholar]
- Sorooshian, S.; Duan, Q.; Gupta, V.K. Calibration of rainfall-runoff models: Application of global optimization to the Sacramento soil moisture accounting model. Water Resour. Res. 1993, 29, 1185–1194. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Gupta, V.K.; Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 1993, 76, 501–521. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
Name (Abbreviation) | Formulation |
---|---|
Total Mean Squared Error (TMSE) | |
Root Mean Squared Error (RMSE) | |
Nash–Sutcliffe Measure (NSF) | |
Absolute Peak Difference (APD) | |
Percent Bias (PB) | |
Mean Absolute Error (MAE) | |
Maximum Absolute Error (MAE) | |
Three Peak Flow Difference (TPFD) |
Parameter | Definition (Units) | Lower Bound | Upper Bound |
---|---|---|---|
Cmax | Maximum storage capacity (mm) | 50 | 600 |
B | Shape parameter of the probability distribution of the soil moisture capacity | 0.05 | 1.95 |
α | Ratio of the distribution of the flow between quick and slow reservoirs | 0.01 | 1 |
n | Number of quick flow reservoirs | 1 | 4 |
Kslow | Conductivity of slow flow reservoir (1/day) | 0.001 | 0.1 |
Kquick | Conductivity of quick flow reservoir (1/day) | 0.1 | 0.95 |
TPFD | NSF | PB | TMSE | |
---|---|---|---|---|
TPFD | 1.0 | |||
NSF | −0.455 | 1.0 | ||
PB | −0.228 | −0.049 | 1.0 | |
TMSE | 0.504 | −1.0 | 0.086 | 1.0 |
Crossover and Mutation Rates (Crate) | Static Balancing Approaches (Three Cases) (CDI, MDI) | Variable Balancing Approaches (Four Cases) |
---|---|---|
0.6 | (0.5, 0.5) | PSF1 for CDI and MDI |
0.75 | (2.0, 0.5) | PSF2 for CDI and MDI |
0.9 | (20, 20) | PSF1 for CDI and PSF2 for MDI |
PSF2 for CDI and PSF1 for MDI |
NPOP = 30 | NPOP = 50 | NPOP = 100 | ||
---|---|---|---|---|
NGEN = 100 | Total SQM | 1 | 3 | 60 |
Mean SQM (stdv) | 0.1 (0.316) | 0.3 (0.675) | 6 (5.907) | |
Mean SPM | 0.798 | 0.621 | 0.994 | |
Mean COM | 0.127 | 0.057 | 0.061 | |
NGEN = 500 | Total SQM | 24 | 40 | 232 |
Mean SQM (stdv) | 2.4 (2.989) | 4 (5.033) | 23.2 (6.647) | |
Mean SPM | 0.703 | 0.820 | 0.825 | |
Mean COM | 0.026 | 0.048 | 0.014 | |
NGEN = 1000 | Total SQM | 1 | 28 | 122 |
Mean SQM (stdv) | 0.1 (0.316) | 2.8 (1.814) | 12.2 (4.872) | |
Mean SPM | 0.826 | 0.855 | 0.895 | |
Mean COM | 0.058 | 0.031 | 0.066 |
(CDI, MDI) | ||||
---|---|---|---|---|
(0.5, 0.5) | (2.0, 0.5) | (20, 20) | ||
Crate = 0.6 | Mean SQM (stdv) | 10.6 (3.8) | 12.5 (5.8) | 13.9 (15.8) |
Mean SPM | 0.828 | 0.761 | 0.850 | |
Mean COM | 0.008 | 0.006 | 0.088 | |
Crate = 0.75 | Mean SQM (stdv) | 10.7 (5.0) | 12 (5.8) | 12.4 (14.7) |
Mean SPM | 0.829 | 0.793 | 0.777 | |
Mean COM | 0.008 | 0.007 | 0.008 | |
Crate = 0.9 | Mean SQM (stdv) | 8.8 (2.9) | 8.2 (3.7) | 9.9 (4.0) |
Mean SPM | 0.805 | 0.766 | 0.749 | |
Mean COM | 0.012 | 0.012 | 0.009 |
Static Approach (CDI, MDI) | Variable Approach (Table 4) | |||||||
---|---|---|---|---|---|---|---|---|
(0.5, 0.5) | (2.0, 0.5) | (20, 20) | Approach 1 | Approach 2 | Approach 3 | Approach 4 | ||
Crate = 0.6 | Mean SQM (stdv) | 0 | 0 | 0 | 0 | 0 | 22.3 (4.138) | 16.9 (5.705) |
Mean SPM | 2.081 | 1.525 | 1.241 | 1.278 | 1.597 | 1.269 | 1.299 | |
Mean COM | 0.189 | 0.175 | 0.255 | 0.193 | 0.228 | 0.017 | 0.013 | |
Crate = 0.75 | Mean SQM (stdv) | 0 | 0 | 0 | 0 | 0 | 0.1 (0.316) | 0 |
Mean SPM | 2.081 | 2.023 | 1.945 | 1.266 | 1.180 | 1.280 | 1.599 | |
Mean COM | 0.186 | 0.201 | 0.181 | 0.158 | 0.232 | 0.191 | 0.194 | |
Crate = 0.9 | Mean SQM (stdv) | 0 | 0 | 0 | 0 | 0 | 19.9 (7.880) | 21.3 (4.084) |
Mean SPM | 1.801 | 1.646 | 1.416 | 1.426 | 1.551 | 1.138 | 1.149 | |
Mean COM | 0.214 | 0.208 | 0.194 | 0.206 | 0.218 | 0.062 | 0.011 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, D.; Choi, Y.H.; Kim, J.H. Multiobjective Automatic Parameter Calibration of a Hydrological Model. Water 2017, 9, 187. https://doi.org/10.3390/w9030187
Jung D, Choi YH, Kim JH. Multiobjective Automatic Parameter Calibration of a Hydrological Model. Water. 2017; 9(3):187. https://doi.org/10.3390/w9030187
Chicago/Turabian StyleJung, Donghwi, Young Hwan Choi, and Joong Hoon Kim. 2017. "Multiobjective Automatic Parameter Calibration of a Hydrological Model" Water 9, no. 3: 187. https://doi.org/10.3390/w9030187
APA StyleJung, D., Choi, Y. H., & Kim, J. H. (2017). Multiobjective Automatic Parameter Calibration of a Hydrological Model. Water, 9(3), 187. https://doi.org/10.3390/w9030187