Development of Field Pollutant Load Estimation Module and Linkage of QUAL2E with Watershed-Scale L-THIA ACN Model
<p>Flow diagram for development of watershed-scale L-THIA ACN-WQ (Long Term Hydrologic Impact Assessment Asymptotic Curve Number-Water Quality) model.</p> "> Figure 2
<p>General structure of QUAL2E [<a href="#B35-water-08-00292" class="html-bibr">35</a>].</p> "> Figure 3
<p>Two study watersheds used for evaluation of watershed-scale L-THIA ACN-WQ model.</p> "> Figure 4
<p>Comparison between simulated streamflow (<b>a</b>) and observed streamflow (<b>b</b>) at Dalcheon A watershed (2011–2014).</p> "> Figure 5
<p>Comparison between simulated streamflow (<b>a</b>) and observed streamflow (<b>b</b>) at Pyungchang A watershed (2011–2014).</p> "> Figure 6
<p>Comparison between simulated TN (<b>a</b>) and observed TN (<b>b</b>) at Dalcheon A watershed (2011–2014).</p> "> Figure 7
<p>Comparison between simulated TN (<b>a</b>) and observed TN (<b>b</b>) at Pyungchang A watershed (2011–2014).</p> "> Figure 7 Cont.
<p>Comparison between simulated TN (<b>a</b>) and observed TN (<b>b</b>) at Pyungchang A watershed (2011–2014).</p> "> Figure 8
<p>Comparison between simulated and observed TP at Dalcheon A watershed (2011–2014).</p> "> Figure 9
<p>Comparison between simulated and observed TP at Pyungchang A watershed (2011–2014).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of the Water Quality Simulation Module of the Watershed-Scale L-THIA ACN Model
2.1.1. Development of the Field Pollutant Load Estimation Module
2.1.2. Incorporation of Simplified QUAL2E Instream Water Quality Model
2.2. Applications of the Watershed-Scale L-THIA ACN-WQ Model
3. Results and Discussion
3.1. Estimation of Pollutant Load
3.2. Model Performance Compared to Observed Streamflow And Pollutant Loads
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United States Environmental Protection Agency (USEPA). National Management Measures to Control Nonpoint Source Pollution from Agriculture; EPA 841-B-03-004; U.S. Environmental Protection Agency Office of Water (4503T): Washington, DC, USA, 2003.
- Holvoet, K.M.; Seuntjens, P.; Vanrolleghem, P.A. Monitoring and modeling pesticide fate in surface waters at the catchment scale. Ecol. Model. 2007, 209, 53–64. [Google Scholar] [CrossRef]
- Jeon, J.H.; Yoon, C.G.; Donigian, A.S.; Jung, K.W. Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions. Agric. Water Manag. 2007, 90, 75–86. [Google Scholar] [CrossRef]
- Li, Z.; Luo, C.; Xi, Q.; Li, H.; Pan, J.; Zhou, Q.; Xiong, Z. Assessment of the AnnAGNPS model in simulating runoff and nutrients in a typical small watershed in the Taihu Lake basin, China. Catena 2015, 133, 349–361. [Google Scholar] [CrossRef]
- Ribarova, I.; Ninov, P.; Cooper, D. Modeling nutrient pollution during a first flood event using HSPF software: Iskar River case study, Bulgaria. Ecol. Model. 2008, 211, 241–246. [Google Scholar] [CrossRef]
- Ryu, J.; Cho, J.; Kim, I.J.; Mun, Y.; Moon, J.P.; Kim, N.W.; Lim, K.J. Enhancement of SWAT-REMM to simulate reduction of total nitrogen with riparian buffer. Trans. ASABE 2011, 54, 1791–1798. [Google Scholar] [CrossRef]
- Yang, G.; Best, E.P. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework. J. Environ. Manag. 2015, 161, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Bicknell, B.; Imhoff, J.; Kittle, J.; Jobes, T.; Donigian, A. HSPF, User’s Manual; Version 12; U.S. Environmental Protection Agency: Athens, GA, USA, 2001; pp. 120–128.
- Gironas, J.; Roesner, L.A.; Rossman, L.A.; Davis, J. A new applications manual for the Storm Water Management Model (SWMM). Environ. Model. Softw. 2010, 25, 813–814. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). SWMM 5 User’s Manual; EPA/600/R-05/040; National Risk Management Research Laboratory, Office of research and Development: Cincinnati, OH, USA, 2010.
- Edwards, C.; Miller, M. PLOAD Version 3.0 User’s Manual; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2001.
- Tetra Tech, Inc. User’s Guide Spreadsheet Tool for the Estimation of Pollutant Load (STEPL); Version 4.1; Tetra Tech, Inc.: Fairfax, VA, USA, 2011. [Google Scholar]
- Park, Y.S.; Engel, B.A.; Harbor, J. A web-based model to estimate the impact of best management practices. Water 2014, 6, 455–471. [Google Scholar] [CrossRef]
- Bhaduri, B.; Grove, M.; Lowry, C.; Harbor, J. Assessing the long-term hydrologic impact of land-use change: Cuppy McClure watershed, Indiana. J. Am. Water Works Assoc. 1997, 89, 94–106. [Google Scholar]
- Engel, B.A. GIS-based CN Runoff Estimation; Agricultural and Biological Engineering Departmental Report; Purdue University: West Lafayette, IN, USA, 1997. [Google Scholar]
- Harbor, J.M. A practical method for estimating the impact of land-use change on surface runoff, groundwater recharge and wetland hydrology. J. Am. Plan. Assoc. 1994, 60, 95–108. [Google Scholar] [CrossRef]
- Lim, K.J.; Engel, B.A.; Tang, Z.; Muthukrishnan, S.; Choi, J.; Kim, K. Effects of calibration on L-THIA GIS runoff and pollutant estimation. J. Environ. Manag. 2006, 78, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.H.; Kum, D.H.; Jung, Y.; Kim, K.; Shin, D.S.; Engel, B.A.; Shin, Y.; Lim, K.J. Development of a Web-based L-THIA 2012 direct runoff and pollutant Auto-calibration module using a genetic algorithm. Water 2013, 5, 1952–1963. [Google Scholar] [CrossRef]
- Lim, K.J.; Engel, B.A.; Bhaduri, B.; Harbor, J. Development of the Long Term Hydrologic Impact Assessment Tool (L-THIA) WWW System. In Proceedings of the 10th International Soil and Conservation Organization Meeting, West Lafayette, IN, USA, 24–29 May 1999; pp. 1018–1023.
- Ryu, J.; Kim, E.J.; Han, M.D.; Kim, Y.S.; Kum, D.H.; Lim, K.J.; Park, B.K. Enhancement of Estimation Method on the Land T-P Pollutant Load in TMDLs Using L-THIA. J. Korean Soc. Environ. Eng. 2014, 36, 162–171. [Google Scholar] [CrossRef]
- Jang, J.H.; Jung, K.W.; Yoon, C.G. Modification of SWAT model for simulation of organic matter in Korean watersheds. Water Sci. Technol. 2012, 66, 2355–2362. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Engel, B.A.; Lim, K.J.; Pijanowski, B.C.; Habor, J. Minimizing the Impact of urbanization on long term runoff. J. Am. Water Resour. Assoc. 2005, 41, 1347–1359. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Representation and evaluation of low impact development practices with L-THIA-LID: An example for site planning. Environ. Pollut. 2012, 1, 1–13. [Google Scholar] [CrossRef]
- Hawkins, R.H. Asymptotic determination of runoff curve numbers from data. J. Irrig. Drain. Eng. 1993, 119, 334–345. [Google Scholar] [CrossRef]
- Ryu, J.; Jung, Y.; Kong, D.S.; Park, B.K.; Kim, Y.S.; Engel, B.A.; Lim, K.J. Approach of Land Cover based Asymptotic Curve Number Regression Equation to Estimate Runoff. J. Irrig. Drain. Eng. 2016, in press. [Google Scholar]
- Ryu, J.; Jang, W.S.; Kim, J.; Choi, J.D.; Engel, B.A.; Lim, K.J. Development of Watershed-scale Long term Hydrologic Impact Assessment Model with Asymptotic Curve Number Regression Equation. Water 2016, 8, 153. [Google Scholar] [CrossRef]
- Bhaduri, B.A. GIS-Based Model to Assess the Long-Term Impacts of Land Use Change on Hydrology and Nonpoint Source Pollution. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 1998. [Google Scholar]
- Choi, J.D. Effect of Agricultural Activities Farm Environment of Groundwater Quality; DAESAN Agriculture Foundation: Seoul, Korea, 1995; pp. 434–444. [Google Scholar]
- Han River Watershed Management Committee (HRWMC). Research on Long Term Monitoring for the Non-point Source Discharge in Han River Basin; National Institute Environmental Research (NIER): Incheon, Korea, 2014. [Google Scholar]
- Nakdong River Basin Management Committee (GRBMC). A Monitoring and Management Scheme for the Non-Point Sources in Nakdong River Basin; National Institute Environmental Research (NIER): Incheon, Korea, 2004. [Google Scholar]
- Geum River Basin Management Committee (GRBMC). A Monitoring and Management Scheme for the Non-Point Sources in Geum River Basin; National Institute Environmental Research (NIER): Incheon, Korea, 2014. [Google Scholar]
- Youngsan River Basin Management Committee (GRBMC). A Monitoring and Management Scheme for the Non-Point Sources in Youngsan River Basin; National Institute Environmental Research (NIER): Incheon, Korea, 2014. [Google Scholar]
- National Institute Environmental Research (NIER). Public Hearing of Nonpoint Source Pollution Unit Load Survey; National Institute Environmental Research (NIER): Incheon, Korea, 2014. [Google Scholar]
- Brown, L.C.; Barnwell, T.O. The Enhanced Water Quality Models QUAL2E and QUAL2E-UNCAS Documentation and User Manual; EPA/600/3-87/007; United States Environmental Protection Agency (USEPA): Athens, GA, USA, 1987.
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 16th ed.; American Public Health Association, Inc.: Washington, DC, USA, 1985. [Google Scholar]
- Cluis, D.; Couture, P.; Begin, R.; Visser, S.A. Potential eutrophication assessment in rivers; relationship between produced and exported loads. Swiss J. Hydrol. 1988, 50, 166–181. [Google Scholar] [CrossRef]
- Stefan, H.G.; Preud’Homme, E.B. Stream temperature estimation from air temperatuer. J. Am. Water Resour. Assoc. 1993, 29, 27–45. [Google Scholar] [CrossRef]
- Glavan, M.; Milicic, V.; Pintar, M. Finding options to improve catchment water quality Lessons learned from historical land use situations in a Mediterranean catchment in Slovenia. Ecol. Model. 2013, 261, 58–73. [Google Scholar] [CrossRef]
- Na, J.S. Effects of Non-Point Pollutant Sources Using QUAL2E Model. Master’s Thesis, Chosoen University, Gwang-ju, Korea, 2015. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models, Part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Glavan, M.; White, S.M.; Holman, I.P. Water quality targets and maintenance of valued landscape character—Experience in the Axe catchment, UK. J. Environ. Manag. 2012, 103, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; USDA Agricultural Handbook No. 537; U.S. Government Printing Office: Washington, DC, USA, 1978.
- Moriasi, D.N.; Arnold, J.G.; VanLiew, M.W.; Bingner, R.L.; Hrmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ramanarayanan, T.S.; Williams, J.R.; Dugas, W.A.; Hauck, L.M.; McFarland, A.M.S. Using APEX to Identify Alternative Practices for Animal Waste Management. In Proceedings of the American Society of Agricultural Engineers Annual International Meeting, Minneapolis, MN, USA, 10–14 August 1997.
- Duda, P.B.; Hummel, P.R.; Donigian, A.S., Jr.; Imhoff, J.C. BASINS/HSPF: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1523–1547. [Google Scholar] [CrossRef]
Land Cover | BOD5 (Biocheminal Oxygen Demand) | TN (Total Nitrogen) | TP (Total Phosphorous) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
<10 mm | 10–30 | 31–50 | >50 mm | <10 mm | 10–30 | 31–50 | >50 mm | <10 mm | 10–30 | 31–50 | >50 mm | |
Residential area | 6.48 | 6.66 | 4.66 | 3.08 | 5.44 | 5.71 | 3.17 | 4.06 | 0.373 | 0.289 | 0.210 | 0.282 |
Manufacturing area | 24.96 | 22.36 | 10.72 | 4.97 | 3.11 | 3.49 | 7.09 | 2.94 | 0.342 | 0.423 | 0.338 | 0.358 |
Regional public facility area | 32.21 | 49.52 | 22.70 | 14.52 | 7.14 | 8.62 | 6.08 | 2.47 | 0.823 | 0.757 | 0.425 | 0.287 |
Recreational facility area | 18.53 | 10.76 | 10.21 | 6.38 | 6.28 | 3.69 | 4.89 | 1.67 | 0.845 | 0.352 | 0.460 | 0.269 |
Road | 10.61 | 7.17 | 8.89 | 3.31 | 6.18 | 2.68 | 2.76 | 2.01 | 0.221 | 0.231 | 0.217 | 0.176 |
Commercial area | 6.52 | 8.12 | 4.48 | 4.12 | 5.81 | 5.12 | 2.59 | 5.68 | 0.277 | 0.331 | 0.212 | 0.453 |
Upland | 2.26 | 3.40 | 3.57 | 3.50 | 2.38 | 2.83 | 2.33 | 2.41 | 0.215 | 0.386 | 0.301 | 0.436 |
Orchard | 0.00 | 0.68 | 5.11 | 11.37 | 0.00 | 1.93 | 6.75 | 6.89 | 0.000 | 0.692 | 1.358 | 2.233 |
Green house | 4.77 | 7.13 | 6.34 | 5.78 | 1.88 | 3.04 | 5.18 | 3.12 | 0.585 | 1.155 | 2.948 | 2.595 |
Paddy | 0.00 | 1.10 | 2.09 | 2.63 | 0.00 | 1.41 | 3.88 | 5.54 | 0.000 | 0.154 | 0.423 | 0.962 |
Pasture | 1.18 | 1.16 | 1.22 | 1.64 | 1.33 | 2.26 | 2.48 | 2.81 | 0.043 | 0.059 | 0.046 | 0.061 |
Forest | 3.80 | 5.01 | 3.46 | 3.23 | 1.69 | 2.69 | 2.30 | 3.33 | 0.193 | 0.325 | 0.232 | 0.372 |
Bare land | 6.52 | 8.12 | 4.48 | 4.12 | 5.81 | 5.12 | 2.59 | 5.68 | 0.277 | 0.331 | 0.212 | 0.453 |
Parameter Name | Description | Range | Default Value |
---|---|---|---|
Adj_EMCDR,N | Constant value for adjustment of nitrogen in surface | −0.9–0.9 | 1.0 |
Adj_EMCBF,N | Constant value for adjustment of nitrogen in aquifer | −0.9–0.9 | 1.0 |
Adj_EMCDR,P | Constant value for adjustment of phosphorus in surface | −0.9–0.9 | 1.0 |
Adj_EMCBF,P | Constant value for adjustment of phosphorus in aquifer | −0.9–0.9 | 1.0 |
TN_ratio1 1 | Ratio of organic-N in total nitrogen | 0.0–0.9 | 0.05 |
TN_ratio2 1 | Ratio of NO3-N in total nitrogen | 0.0–0.9 | 0.8 |
TN_ratio3 1 | Ratio of NH3-N in total nitrogen | 0.0–0.9 | 0.1 |
TP_ratio1 2 | Ratio of organic-P in total phosphorus | 0.0–0.9 | 0.5 |
Parameter Name | Description | Recommended Range in QUAL2E | Default Value |
---|---|---|---|
RS1 | Local algal settling rate in the reach at 20 °C | 0.15–1.82 | 0.3408 |
RS2 | Benthic source rate for dissolved phosphorus in the reach at 20 °C | 0.001–0.1 | 0.1 |
RS3 | Benthic source rate for NH4-N in the reach at 20 °C | 0.0–1.0 | 0.0 |
RS4 | Rate coefficient for organic nitrogen settling in the reach at 20 °C | 0.001–0.1 | 0.001 |
RS5 | Organic phosphorus settling rate in the reach at 20 °C | 0.001–0.1 | 0.08 |
RK1 | Carbonaceous biological oxygen demand (CBOD) deoxygenation rate coefficient in the reach at 20 °C | 0.02–3.4 | 0.3 |
RK2 | Oxygen reaeration rate in accordance with Fickian diffusion in the reach at 20 °C | 0.0–100.0 | 1.0 |
RK3 | Rate of loss of CBOD due to settling in the reach at 20 °C | −0.36–0.36 | −0.36 |
RK4 | Benthic oxygen demand rate in the reach at 20 °C | 0.0–100.0 | 0.0 |
BC1 | Rate constant for biological oxidation of NH4 to NO2 in the reach at 20 °C | 0.1–1 | 0.1 |
BC2 | Rate constant for biological oxidation of NO2 to NO3 in the reach at 20 °C | 0.2–2 | 0.2 |
BC3 | Rate constant for hydrolysis of organic N to NH4 in the reach at 20 °C | 0.2–0.4 | 0.03 |
BC4 | Rate constant for mineralization of organic P to dissolved P in the reach at 20 °C | 0.01–0.7 | 0.1 |
RTH | Algal respiration rate at 20 °C | 0.05–5.0 | 0.05 |
TFAC | Fraction of photosynthetically active solar radiation | 0.0–1.0 | 0 |
MMX | Maximum specific algal growth rate at 20 °C | 1.0–3.0 | 1.0 |
IG | QUAL2E algae growth limiting option (1: multiplicative, 2: limiting nutrient, 3: harmonic mean) | 1, 2, 3 | 1 |
A0 | Ratio of chlorophyll-a to algal biomass | 10.0–100.0 | 10 |
A1 | Fraction of nitrogen algal biomass | 0.07–0.09 | 0.071 |
A2 | Fraction of phosphorus algal biomass | 0.01–0.02 | 0.003 |
A3 | Rate of oxygen production per unit of algal photosynthesis | 1.4–2.3 | 1.4 |
A4 | Rate of oxygen uptake per unit of algal respiration | 1.6–2.3 | 1.6 |
A5 | Rate of oxygen uptake per unit NH3-N oxidation | 3.0–4.0 | 3.0 |
A6 | Rate of oxygen uptake per unit NO2-N oxidation | 1.0–1.14 | 1.0 |
Lam0 | Non-algal portion of the light extinction coefficient | 0–10 | 0 |
Lam1 | Linear algal self-shading coefficient | 0.006–0.065 | 0.006 |
Lam2 | Nonlinear algal self-shading coefficient | 0–1 | 0 |
KN | Michaelis-Menten nitrogen half-saturation constant | 0.01–0.3 | 0.01 |
KP | Michaelis-Menten phosphorus half-saturation constant | 0.001–0.05 | 0.001 |
KL | Light half-saturation coefficient | 0.223–1.135 | 0.223 |
Knb | Nitrification rate coefficient in CBOD5 | – | 0.5 |
Kdb | Deoxidation rate coefficient in CBOD5 | – | 0.5 |
PN | Preference factor for ammonium nitrogen | 0.0–1.0 | 0.0 |
Information of Study Area | Dalcheon A | Pyungchang A | |
---|---|---|---|
Surface area (km2) | 1200.33 | 1756.87 | |
Average precipitation (2011–2014) (mm/year) | 1315.6 | 1389.6 | |
Average temperature (2011–2014) (degree) | 11.7 | 12.8 | |
Hydrologic soil group (%) | A | 11.8 | 11.7 |
B | 16.0 | 15.9 | |
C | 36.6 | 35.8 | |
D | 35.6 | 36.6 | |
Agriculture production type (%) | Upland crop | 42.5 | 32.6 |
Green house | 14.7 | 20.7 | |
Ochard | 21.6 | 22.6 | |
Paddy | 21.2 | 24.1 | |
Average water quality (2011–2014) (mg/L) | BOD | 0.96 | 0.88 |
TN | 2.76 | 2.91 | |
TP | 0.02 | 0.03 |
Watershed | Adj_CN 1 | SLSUB 2 | DRlag 3 | αBF 4 | aqfthr 5 | Frconf 6 | BFdelay 7 | Mk1 8 | Mk2 9 | Mkx 10 |
---|---|---|---|---|---|---|---|---|---|---|
Dalcheon A | 0.03 | 1.5 | 4 | 0.7 | 20.0 | 0.10 | 1 | 0.05 | 0.95 | 0.2 |
Pyungchang A | 0.09 | 1.0 | 8 | 0.5 | 30.0 | 0.05 | 5 | 0.25 | 0.75 | 0.5 |
Parameters | Dalcheon A | Pyungchang A |
---|---|---|
Adj_EMCDR,N | 0.80 | 0.70 |
Adj_EMCBF,N | 0.90 | 0.90 |
Adj_EMCDR,P | 0.60 | 0.40 |
Adj_EMCBF,P | 0.40 | 0.35 |
TN_ratio1 | 0.03 | 0.03 |
TN_ratio2 | 0.95 | 0.95 |
TN_ratio3 | 0.01 | 0.01 |
TP_ratio1 | 0.40 | 0.40 |
RS1 | 1.00 | 1.00 |
RS2 | 0.001 | 0.001 |
RS3 | 0.001 | 0.01 |
RS4 | 0.10 | 0.001 |
RS5 | 0.10 | 0.1 |
RS6 | 2.50 | 2.50 |
RK1 | 0.50 | 0.50 |
RK2 | 50 | 50 |
RK3 | 0.36 | 0.36 |
RK4 | 2.00 | 2.00 |
RK5 | 2.00 | 2.00 |
RK6 | 1.71 | 1.71 |
BC1 | 0.10 | 0.55 |
BC2 | 0.20 | 2.00 |
BC3 | 0.02 | 0.4 |
BC4 | 0.01 | 0.01 |
TFAC | 0.30 | 0.30 |
MMX | 1 | 1 |
IG | 3 | 3 |
A0 | 80 | 80 |
A1 | 0.09 | 0.09 |
A2 | 0.01 | 0.01 |
A3 | 1.60 | 1.60 |
A4 | 2 | 2 |
A5 | 3.50 | 3.50 |
A6 | 1.00 | 1.00 |
Lam0 | 1 | 1 |
Lam1 | 0.03 | 0.03 |
Lam2 | 0.054 | 0.054 |
KN | 0.75 | 0.02 |
KP | 0.020 | 0.025 |
KL | 0.025 | 0.75 |
Knb | 0.50 | 0.03 |
Kdb | 0.03 | 0.045 |
PN | 0.45 | 0.50 |
Watershed | Average Streamflow (2011–2014) (m3/s) | R2 | NSE | |
---|---|---|---|---|
Observation | Estimation | |||
Dalcheon A | 26.29 | 27.68 | 0.79 | 0.78 |
Pyungchang A | 53.69 | 56.48 | 0.76 | 0.76 |
Watershed | Pollutant Loads | Average Pollutant Load (2011–2014) (kg) | R2 | NSE | Average Concentration (2011–2014) (mg/L) | ||
---|---|---|---|---|---|---|---|
Observation | Estimation | Observation | Estimation | ||||
Dalcheon A | TN | 6077.44 | 5227.04 | 0.81 | 0.79 | 2.76 | 2.70 |
TP | 242.13 | 195.75 | 0.79 | 0.78 | 0.02 | 0.03 | |
Pyungchang A | TN | 134,57.67 | 10,282.49 | 0.66 | 0.64 | 2.91 | 2.35 |
TP | 302.51 | 306.02 | 0.66 | 0.66 | 0.03 | 0.04 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, J.; Jang, W.S.; Kim, J.; Jung, Y.; Engel, B.A.; Lim, K.J. Development of Field Pollutant Load Estimation Module and Linkage of QUAL2E with Watershed-Scale L-THIA ACN Model. Water 2016, 8, 292. https://doi.org/10.3390/w8070292
Ryu J, Jang WS, Kim J, Jung Y, Engel BA, Lim KJ. Development of Field Pollutant Load Estimation Module and Linkage of QUAL2E with Watershed-Scale L-THIA ACN Model. Water. 2016; 8(7):292. https://doi.org/10.3390/w8070292
Chicago/Turabian StyleRyu, Jichul, Won Seok Jang, Jonggun Kim, Younghun Jung, Bernard A. Engel, and Kyoung Jae Lim. 2016. "Development of Field Pollutant Load Estimation Module and Linkage of QUAL2E with Watershed-Scale L-THIA ACN Model" Water 8, no. 7: 292. https://doi.org/10.3390/w8070292
APA StyleRyu, J., Jang, W. S., Kim, J., Jung, Y., Engel, B. A., & Lim, K. J. (2016). Development of Field Pollutant Load Estimation Module and Linkage of QUAL2E with Watershed-Scale L-THIA ACN Model. Water, 8(7), 292. https://doi.org/10.3390/w8070292