Toxicity and Risks Assessment of Polycyclic Aromatic Hydrocarbons in River Bed Sediments of an Artisanal Crude Oil Refining Area in the Niger Delta, Nigeria
<p>Map of the study area.</p> "> Figure 2
<p>Individual PAHs levels in the sediments of the study area.</p> "> Figure 3
<p>Pie chart diagram for the ring wise composition of different PAHs in the sediment samples of the study area.</p> "> Figure 4
<p>(<b>a</b>) 100% ratios of AN/(AN + Phen) were >0.1; (<b>b</b>) 100% mainly combustion sources while that of BaA/(BaA + Chry) ranges from 0.5 to 0.9.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sample Collection, Storage and Pretreatment
2.3. Extraction, Clean-Up and Analysis of PAHs from Samples
2.4. Instrumental Analysis
2.5. Quality Assurance and Quality Control
2.6. Risk Assessment of PAHs
2.7. Incremental Lifetime Cancer Risk (ILCR)
Total Carcinogenic Risk
3. Results and Discussion
3.1. PAHS Composition
3.2. PAHs Source Identification
3.3. Principal Component Analysis
3.4. Potential Ecosystem Risk Assessment
3.5. Human Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Howard, I.C. Levels and Impacts of Some Pollutants in Selected Aquatic Media in the Bukuma Oilfield, Rivers State. Ph.D. Thesis, Rivers State University of Science and Technology, Port Harcourt, Nigeria, 2004; 227p. [Google Scholar]
- World Bank. A Frame Work for Integrated Coastal Zone Management: Environmental Department; World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Custodio, M.; Fow, A.; Chanamé, F.; Orellana-Mendoza, E.; Peñaloza, R.; Alvarado, J.C.; Cano, D.; Pizarro, S. Ecological Risk Due to Heavy Metal Contamination in Sediment and Water of Natural Wetlands with Tourist Influence in the Central Region of Peru. Water 2021, 13, 2256. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S.; Kurwadkar, S.; Kumar, A.; Sankar, T.K. Toxicity and health risk assessment of polycyclic aromatic hydrocarbons in surface water, sediments and groundwater vulnerability in Damodar River Basin. Groundw. Sustain. Dev. 2021, 13, 100553. [Google Scholar] [CrossRef]
- Tanee, F.; Yabrade, M. Assessing the Impact of Artisanal Petroleum Refining on Vegetation and Soil Quality: A Case Study of Warri South West Salt Wetland of Delta State, Nigeria. Res. J. Environ. Toxicol. 2016, 10, 205–212. [Google Scholar] [CrossRef]
- Howard, I.; Azuatola, O.; Abiodun, I. Investigation on impacts of artisanal refining of crude oil on river bed sediments. Our Nat. 2017, 15, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Avishai, N.; Rabin, O.C.; Moiseeva, E.; Rinkeveh, B. Genotoxicity of the Kishon River, Israel: The Application of an in vitro cellular assay. Mutat. Res. 2002, 518, 21–37. [Google Scholar] [CrossRef]
- UNFPA (United Nations Population Fund). Global Population and water access and Sustainability, Population and Development Strategies Series; UNFPA: New York, NY, USA, 2003. [Google Scholar]
- Wang, L.; Zhang, S.; Wang, L.; Zhang, W.; Shi, X.; Lu, X.; Li, X.; Li, X. Concentration and Risk Evaluation of Polycyclic Aromatic Hydrocarbons in Urban Soil in the Typical Semi-Arid City of Xi’an in Northwest China. Int. J. Environ. Res. Public Health 2018, 15, 607. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.-C.; Shimizu, Y.; Matsuda, A.T.; Matsui, S. Characterization of Polycyclic Aromatic Hydrocarbons (PAHs) in Different Size Fractions in Deposited Road Particles (DRPs) from Lake Biwa Area, Japan. Environ. Sci. Technol. 2005, 39, 7402–7409. [Google Scholar] [CrossRef]
- Stout, S.A.; Uhler, A.D.; Emsbo-Mattingly, S.D. Comparative Evaluation of Background Anthropogenic Hydrocarbons in Surficial Sediments from Nine Urban Waterways. Environ. Sci. Technol. 2004, 38, 2987–2994. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhang, J.; Liu, F.; Zhang, L.L. Polycyclic aromatic hydrocarbons in surface sediment of typical estuaries and the spatial distribution in Haihe river basin. Ecotoxicology 2014, 23, 486–494. [Google Scholar] [CrossRef]
- Boonyatumanond, R.; Wattayakorn, G.; Togo, A.; Takada, H. Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand. Mar. Pollut. Bull. 2006, 52, 942–956. [Google Scholar] [CrossRef]
- Adeniji, A.O.; Okoh, O.O.; Okoh, A. Distribution pattern and health risk assessment of polycyclic aromatic hydrocarbons in the water and sediment of Algoa Bay, South Africa. Environ. Geochem. Health 2019, 41, 1303–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tongo, I.; Ezemonye, L.; Akpeh, K. Distribution, characterization, and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in Ovia River, Southern Nigeria. Environ. Monit. Assess. 2017, 189, 247. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Bai, J.; Wang, J.; Lu, Q.; Zhao, Q.; Cui, B.; Liu, X. Polycyclic aromatic hydrocarbons (PAHs) in wetland soils under different land uses in a coastal estuary: Toxic levels, sources and relationships with soil organic matter and water-stable aggregates. Chemosphere 2014, 110, 8–16. [Google Scholar] [CrossRef] [PubMed]
- King, A.J.; Readman, J.W.; Zhou, J.L. Behaviour of PAHs in dissolved, colloidal and particulate phases in sedimentary cores. Int. J. Environ. Anal. Chem. 2007, 87, 211–225. [Google Scholar] [CrossRef]
- Adeniji, A.O.; Okoh, O.O.; Okoh, A. Levels of Polycyclic Aromatic Hydrocarbons in the Water and Sediment of Buffalo River Estuary, South Africa and Their Health Risk Assessment. Arch. Environ. Contam. Toxicol. 2019, 76, 657–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ATSDR (Agency for Toxic Substances and Disease Registry). Public Health Assessment Guidance Manual (2005 Update). Appendix G: Calculating Exposure Doses; U.S. Department of Health and Human Services Public Health Service: Atlanta, GA, USA, 2005. [Google Scholar]
- Yuan, S.Y.; Change, B.V. Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediments in Taiwan. J. Environ. Sci. Health Part B 2007, 42, 63–69. [Google Scholar] [CrossRef]
- Brazkova, M.; Krastanov, A. Polycyclic aromatic hydrocarbons: Sources, effects and biodegradation. Hayчни Tpyдoвe Ha Pyceнcкия Унивepcитeт Toм 2013, 10, 1–5. [Google Scholar]
- Olatunji, O.S.; Fatoki, O.; Opeolu, B.; Ximba, B. Determination of polycyclic aromatic hydrocarbons [PAHs] in processed meat products using gas chromatography—Flame ionization detector. Food Chem. 2014, 156, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Neff, J.M. Bioaccumulation in Marine Organisms: Effects of Contaminants from Oil Well Produced Water; Elsevier Science Publishers: Amsterdam, The Netherlands, 2002; 452p. [Google Scholar]
- Maliszewska-Kordybach, B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Appl. Geochem. 1996, 11, 121–127. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A.; Obi, G. Distribution, sources, and health risk assessment of polycyclic aromatic hydrocarbons in dust from urban environment in the Niger Delta, Nigeria. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 623–638. [Google Scholar] [CrossRef]
- Wang, D.; Ma, J.; Li, H.; Zhang, X. Concentration and Potential Ecological Risk of PAHs in Different Layers of Soil in the Petroleum-Contaminated Areas of the Loess Plateau, China. Int. J. Environ. Res. Public Health 2018, 15, 1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasher, E.; Heng, L.Y.; Zakaria, Z.; Surif, S. Assess the ecological risk of polycyclic aromatic hydrocarbons in sediments at Langkawi Island, Malaysia. Sci. World J. 2013, 2013, 858309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ofori, S.A.; Cobbina, S.J.; Imoro, A.Z.; Doke, D.A.; Gaiser, T. Polycyclic Aromatic Hydrocarbon (PAH) Pollution and its Associated Human Health Risks in the Niger Delta Region of Nigeria: A Systematic Review. Environ. Process. 2021, 8, 455–482. [Google Scholar] [CrossRef]
- Agbozu, I.; Opuene, K.; Iwegbue, C.M.A. Occurrence, composition and source identification of polycyclic aromatic hydrocarbons in suspended particulate matter from Oginigba Creek, Sourthern Nigeria. J. Chem. Soc. Nig. 2008, 33, 164–171. [Google Scholar]
- Dong, Y.; Yan, Z.; Wu, H.; Zhang, G.; Zhang, H.; Yang, M. Polycyclic Aromatic Hydrocarbons in Sediments from Typical Algae, Macrophyte Lake Bay and Adjoining River of Taihu Lake, China: Distribution, Sources, and Risk Assessment. Water 2021, 13, 470. [Google Scholar] [CrossRef]
- Niger Delta Mangroves. Available online: https://en.wikipedia.org/wiki/Niger_Delta_mangroves (accessed on 12 August 2021).
- USEPA. Methods 3540C, Soxhlet Extraction; EPA: New York, NY, USA, 1996.
- USEPA. EPA-Method 3630C, Silica Gel Cleanup; EPA: New York, NY, USA, 1996.
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Kingsley, O.; Witthayawirasak, B. Occurrence, ecological and health risk of phthalate esters in surface water of U-Tapao canal. Toxics 2020, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, O.; Witthayawirasak, B. Deterministic Assessment of the Risk of Phthalate Esters in Sediments of U-Tapao Canal, Southern Thailand. Toxics 2020, 8, 93. [Google Scholar] [CrossRef]
- Durant, J.L. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat. Res. 1996, 371, 123–157. [Google Scholar] [CrossRef]
- USEPA. Risk-Based Concentration Table; U.S. Environmental Protection Agency, Region 111 (Third Quarter): New York, NY, USA, 1993.
- USEPA. Risk Assessment Guidance for Superfund. Vol. 1: Human Health Evaluation Manual (F, Supplemental Guidance for Inhalation Risk Assessment) EPA/540/R/070/002; Office of Superfund Remediation and Technology Innovation: Washington, DC, USA, 2009. [Google Scholar]
- USEPA (U.S. Environmental Protection Agency). Risk Assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual EPA/se0/1-89/002; Office of Solid Waste and Emergency Response: Washington, DC, USA, 1989. [Google Scholar]
- NYS DOH (New York States Department of Health). Hopewell precision area contamination: Appendix C-NYS DOH. In Procedure for Evaluating Potential Health Risks for Contaminants of Concern; States Department of Health: New York, NY, USA, 2007. Available online: http://www.health.ny.gov/environmental/investigations/hopewell/appendc.htm (accessed on 12 August 2021).
- Onyedikachi, U.B.; Belonwu, C.D.; Wegwu, M.O.; Ejiofor, E.; Awah, F.M. Sources and cancer risk exposure of polycyclic aromatic hydrocarbons in soils from industrial areas in Southeastern, Nigeria. J. Chem. Health Risk 2019, 9, 203–216. [Google Scholar]
- US. Environmental Protection Agency (US EPA). Supplemental Guidance for Developing Soil Screening Level for Superfund Sites. OSWER 9355.4-24; Office of Solid Waste and Emergency Response: Washington, DC, USA; U.S. Environmental Protection Agency: Washington, DC, USA, 2001. [Google Scholar]
- Man, Y.B.; Kang, Y.; Wang, H.S.; Lau, W.; Li, H.; Sun, X.L.; Giesy, J.P.; Chow, K.L.; Wong, M.H. Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2013, 261, 770–776. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- USEPA United States Environmental Protection Agency. Mid Atlantic Risk Assessment, Regional Screening Level (RSL) Summary Table. 2012. Available online: http://www.epa.gov/reg3hwmd/risk/human/rb-concentrationtable/usersguide.htm (accessed on 12 August 2021).
- USEPA. Regional Screening Levels (RSL) Tables. In Kansas Department of Health and Environment (KDHE)/Bureau of Environmental Remediation (BER). Risk-Based Standards for Kansas (RSK) Manual, 5th ed.; EPA: New York, NY, USA, 2010. [Google Scholar]
- Ihunwo, O.C.; Shahabinia, A.R.; Udo, K.S.; Bonnail, E.; Onyema, M.O.; Orji, A.N.D.; Mmom, P.C. Distribution of polycyclic aromatic hydrocarbons in Woji Creek, in the Niger Delta. Environ. Res. Commun. 2019, 1, 125001. [Google Scholar] [CrossRef]
- Abayi, J.J.M.; Gore, C.T.; Nagawa, C.; Bandowe, B.A.; Matovu, H.; Mubiru, E.; Ngeno, E.C.; Odongo, S.; Sillanpää, M.; Ssebugere, P. Polycyclic aromatic hydrocarbons in sediments and fish species from the White Nile, East Africa: Bioaccumulation potential, source apportionment, ecological and health risk assessment. Environ. Pollut. 2021, 278, 116855. [Google Scholar] [CrossRef]
- Asagbra, M.; Adebayo, A.; Anumudu, C.; Ugwumba, O.; Ugwumba, A. Polycyclic aromatic hydrocarbons in water, sediment and fish from the Warri River at Ubeji, Niger Delta, Nigeria. Afr. J. Aquat. Sci. 2015, 40, 193–199. [Google Scholar] [CrossRef]
- Olayinka, O.O.; Adedeji, O.H.; Ipeaiyeda, R.A. Determination of polycyclic aromatic hydrocarbons (PAHs) on selected dumpsites in Abeokuta Metropolis, SW, Nigeria. Appl. Environ. Res. 2015, 37, 33–48. [Google Scholar] [CrossRef]
- Asowata, I.T.; Olatunji, A.S. Assessment of Polycyclic Aromatic Hydrocarbon in Soils and Sediments in Onitsha area, South-eastern, Nigeria. In Proceedings of the 1st International Medical Geology Association (IMGA-Nigeria Chapter) Conference, Department of Geology, University of Ibadan, Ibadan, Nigeria, 11–14 December 2018. [Google Scholar]
- Iwekumo, A.; Oghenekohwiroro, E.; Godwin, A.; Solomon, O.; Uwem, B. Source predictions of polycyclic aromatic hydrocarbon (PAHs) concentration in water, sediment, and biota (FISHES) from Ethiope River, Delta State, Southern Nigeria. J. Ecol. Nat. Environ. 2020, 12, 140–149. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, G.; Wang, R.; Liu, J. Concentrations and Sources of Polycyclic Aromatic Hydrocarbons in Water and Sediments from the Huaihe River, China. Anal. Lett. 2014, 47, 2294–2305. [Google Scholar] [CrossRef]
- Moore, F.; Akhbarizadeh, R.; Keshavarzi, B.; Khabazi, S.; Lahijanzadeh, A.; Kermani, M. Ecotoxicological risk of polycyclic aromatic hydrocarbons (PAHs) in urban soil of Isfahan metropolis, Iran. Environ. Monit. Assess. 2015, 187, 207. [Google Scholar] [CrossRef] [PubMed]
- Khuman, S.N.; Chakraborty, P.; Cincinelli, A.; Snow, D.; Kumar, B. Polycyclic aromatic hydrocarbons in surface waters and riverine sediments of the Hooghly and Brahmaputra Rivers in the Eastern and Northeastern India. Sci. Total Environ. 2018, 636, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Saleh, S.M.; Farhan, F.J.; Khwedem, A.A.; Al-Saad, H.T.; Hantoush, A.A.; Zahraal-Hello, A. Assessment of polycyclic aromatic hydrocarbons (PAHs) in water and sediments at South Part Of Al- Hammer Marsh, Southern Iraq. Poll. Res. 2021, 40, 79–87. [Google Scholar]
- Li, G.; Xia, X.; Yang, Z.; Wang, R.; Voulvoulis, N. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China. Environ. Pollut. 2006, 144, 985–993. [Google Scholar] [CrossRef]
- Wang, W.; Huang, M.-J.; Kang, Y.; Wang, H.-S.; Leung, A.O.; Cheung, K.C.; Wong, M.H. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Sci. Total Environ. 2011, 409, 4519–4527. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, M.-J.; Chan, C.-Y.; Cheung, K.C.; Wong, M.H. Risk assessment of non-dietary exposure to polycyclic aromatic hydrocarbons (PAHs) via house PM2.5, TSP and dust and the implications from human hair. Atmos. Environ. 2013, 73, 204–213. [Google Scholar] [CrossRef]
- Jiries, A.; Hussain, H.; Lintelmann, J. Determination of Polycyclic Aromatic Hydrocarbons in Wastewater, Sediments, Sludge and Plants in Karak Province, Jordan. Water Air Soil Pollut. 2000, 121, 217–228. [Google Scholar] [CrossRef]
- Anyakora, C.; Ogbeche, A.; Palmer, P.; Coker, H.; Ukpo, G.; Ogah, C. GC/MS analysis of polynuclear aromatic hydrocarbons in sediment samples from the Niger Delta region. Chemosphere 2005, 60, 990–997. [Google Scholar] [CrossRef]
- Han, B.; Bai, Z.; Guo, G.; Wang, F.; Li, F.; Liu, Q.; Ji, Y.; Li, X.; Hu, Y. Characterization of PM10 fraction of road dust for polycyclic aromatic hydrocarbons (PAHs) from Anshan, China. J. Hazard. Mater. 2009, 170, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-G.; Yang, M.; Jia, H.-L.; Zhou, L.; Li, Y.-F. Polycyclic Aromatic Hydrocarbons in Urban Street Dust and Surface Soil: Comparisons of Concentration, Profile, and Source. Arch. Environ. Contam. Toxicol. 2008, 56, 173–180. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Huang, Q.; Li, W.-Y.; Tang, Y.-J.; Zhao, J.-F. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China. Sci. Total Environ. 2009, 407, 2931–2938. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Qiao, X.; Yang, P.; Tian, F.; Huang, L. Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils: A case study in Dalian, China. Chemosphere 2007, 68, 965–971. [Google Scholar] [CrossRef]
- Tobiszewski, M. Application of diagnostic ratios of PAHs to characterize the pollution emission sources. In Proceedings of the 5th International conference on Environmental Science and Technology, Sarajevo, Bosnia and Herzegovina, 9–13 October 2019. [Google Scholar]
- Chakraborty, P.; Zhang, G.; Li, J.; Selvaraj, S.; Breivik, K.; Jones, K.C. Soil concentrations, occurrence, sources and estimation of air–soil exchange of polychlorinated biphenyls in Indian cities. Sci. Total Environ. 2016, 562, 928–934. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Chen, Y.; Zhou, R. Distribution of polycyclic aromatic hydrocarbons in water, sediment and soil in drinking water resource of Zhejiang Province, China. J. Hazard. Mater. 2008, 150, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Doong, R.-A.; Lin, Y.-T. Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Res. 2004, 38, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Jiang, H.; Kong, L.; Shen, T.; Zhang, X.; Gu, S.; Han, X.; Li, Y. Assessment of Potential Ecological Risk of Heavy Metals in Surface Soils of Laizhou, Eastern China. Water 2021, 13, 2940. [Google Scholar] [CrossRef]
- Bixiong, Y.; Zhihuan, Z.; Ting, M. Pollution sources identification of polycyclic aromatic hydrocarbons of soils in Tianjin area, China. Chemosphere 2006, 64, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.-J.; Lee, C.-L.; Fang, M.-D.; Liu, J. Polycyclic aromatic hydrocarbons in coastal sediments of southwest Taiwan: An appraisal of diagnostic ratios in source recognition. Mar. Pollut. Bull. 2009, 58, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Ibe, F.C.; Duru, C.E.; Isiuku, B.O.; Akalazu, J.N. Ecological risk assessment of the levels of polycyclic aromatic hydrocarbons in soils of the abandoned sections of Orji Mechanic Village, Owerri, Imo State, Nigeria. Bull. Natl. Res. Cent. 2021, 45, 1–16. [Google Scholar] [CrossRef]
- Mudelsee, M. Trend analysis of climate time series: A review of methods. Earth-Sci. Rev. 2019, 190, 310–322. [Google Scholar] [CrossRef]
- World Health Organization. Polynuclear Aromatic Hydrocarbons. In Guidelines for Drinking Water Quality, 2nd ed.; Health Criteria and Other Supporting Information; World Health Organization: Geneva, Switzerland, 1998; pp. 123–152. [Google Scholar]
- Howard, I.C.; Briggs, A.O.; Nduka, J.O. Prevalence of Benzo (a) pyrene (BaP) in the surface sediments and waters of a flow station and its environs in the Niger Delta. J. Niger. Environ. Soc. (JNES) 2014, 1, 82–87. [Google Scholar]
- Bayowa, A.V.; Agbozu, I.E. Seasonal variation of PAHs in marshy sediments from Warri City, Nigeria. Int. J. Biol. Chem. Sci. 2017, 10, 2379. [Google Scholar] [CrossRef] [Green Version]
- Pogribny, I.P. Environmental Exposures and Epigenetic Perturbations in Encyclopedia of Cancer, 3rd ed.; National Center for Toxicological Research: Jefferson, AR, USA, 2019; pp. 574–584. [Google Scholar]
- Canadian Council of Ministers of the Environment. Polycyclic Aromatic Hydrocarbons. Canadian Soil Quality Guide-Lines for Protection of Environmental and Human Health. In Canadian Soil Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2010. Available online: http://ceqg-rcqe.ccme.ca/ (accessed on 12 August 2021).
- Suman, S.; Sinha, A.; Tarafdar, A. Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Sci. Total Environ. 2016, 545–546, 353–360. [Google Scholar] [CrossRef]
- Cachada, A.; Pato, P.; Rocha-Santos, T.; da Silva, E.F.; Duarte, A. Levels, sources and potential human health risks of organic pollutants in urban soils. Sci. Total Environ. 2012, 430, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, W.; Tao, W.; Wang, L.; Shi, X.; Lu, X. Investigating into composition, distribution, sources and health risk of phthalic acid esters in street dust of Xi’an City, Northwest China. Environ. Geochem. Health 2017, 39, 865–877. [Google Scholar] [CrossRef] [PubMed]
Exposure Variables | Age | ||
---|---|---|---|
Child | Adult | Source | |
Body weight, BW (kg) | 15 | 60 | [42] |
Exposure duration, ED (years) | 6 | 24 | [43] |
Exposure frequency, EF (days/year) | 313 | 313 | [44] |
Averaging time, AT (days) | 52 × 365 = 18,980 | 52 × 365 = 18,980 | [45] |
Ingestion rate, IngR (mg/kg) | 200 | 100 | [43] |
Adherence factor, AF (mg/cm2) | 0.2 | 0.07 | [43] |
Adsorption fraction, ABS (unitless) | 0.13 | 0.13 | [43] |
Particle emission factor, PEF (mg3/kg) | 1.36 × 109 | 1.36 × 109 | [43] |
Exposure skin area, SA (cm2) | 2800 | 5700 | [45] |
Averaging time, AT_ (h) | 52 yrs × 365 days/yr × 24 h/day = 455,520 | 52 yrs × 365 days/yr × 24 h/day = 455,520 | [43] |
Gastrointestinal absorption factor, GIABS | 1 | 1 | [46] |
Conversion factor, CF | 1 × 10−6 | 1 × 10−6 | [44] |
Exposure time, ET (hr/day) | 8 | 8 | [43] |
PAHs | Min | Max | Mean ± SD | %PAHs | ER-L | ER-M | Mean Values of This Study |
---|---|---|---|---|---|---|---|
Nap | ND | 3.377 | 0.953 ± 0.61 | 2.27 | 0.160 | 2.100 | 0.953 * |
Acy | ND | 3.851 | 0.995 ± 0.28 | 2.33 | 0.044 | 0.640 | 0.995 ** |
Ace | 0.462 | 3.062 | 0.976 ± 0.63 | 2.27 | 0.016 | 0.500 | 0.976 ** |
Flu | 0.420 | 11.558 | 1.113 ± 1.71 | 2.61 | 0.019 | 0.540 | 1.113 ** |
Phe | 0.546 | 2.520 | 1.226 ± 0.40 | 2.88 | 0.240 | 1.500 | 1.226 * |
Ant | 0.588 | 2.016 | 1.327 ± 0.40 | 3.12 | 0.085 | 1.100 | 1.327 ** |
Flt | 0.378 | 5.880 | 2.624 ± 0.33 | 6.16 | 0.600 | 5.100 | 2.624 * |
Pyr | 0.630 | 3.150 | 1.882 ± 1.23 | 4.42 | 0.665 | 2.600 | 1.882 * |
BaA | 2.835 | 16.367 | 8.790 ± 3.33 | 20.63 | 0.261 | 1.600 | 3.008 ** |
Chry | 1.008 | 8.400 | 3.008 ± 1.97 | 7.06 | 0.384 | 2.800 | 8.790 ** |
BbF | 0.895 | 16.477 | 8.803 ± 3.46 | 20.67 | 0.320 | 1.800 | 8.803 ** |
BkF | ND | 10.769 | 1.472 ± 1.91 | 3.46 | 0.280 | 1.620 | 1.472 * |
BaP | 1.176 | 14.822 | 3.878 ± 3.42 | 9.10 | 0.430 | 1.600 | 3.878 ** |
InP | ND | 4.990 | 1.005 ± 1.05 | 2.36 | 0.240 | - | 1.005 ** |
DahA | ND | 4.637 | 1.747 ± 0.92 | 4.10 | 0.063 | 0.260 | 1.747 ** |
BghiP | 1.344 | 3.990 | 2.817 ± 0.56 | 6.61 | 0.085 | 1.600 | 2.817 ** |
∑16PAHs | 23.461 | 89.886 | 42.607 ± 14.30 | **—higher than both ER-L and ER-M; *—Higher than ER-L | |||
∑7CPAHs | 16.187 | 64.479 | 29.773 ± 10.31 | ||||
∑COMBPAH | 11.319 | 41.933 | 17.428 ± 6.52 | ||||
LMWPAHs | 4.221 | 20.837 | 6.581 ± 3.29 | ||||
HMWPAHs | 18.875 | 77.029 | 36.02 ± 11.95 |
Study Area | No. of PAHs Studied | PAHs Range and/or (Mean) | References |
---|---|---|---|
Warri River at Ubeji, Nigeria | 16 | (4.588) | [49] |
Abeokuta Metropolis, SW, Nigeria | 16 | 11.9–41.6 | [50] |
Onitsha Nigeria | 13 | 0.01–4.281 | [51] |
Woji Creek, in the Niger Delta | 16 | 687.93–1821.5 | [47] |
River Ethiope, Delta State, Nigeria | 16 | 0.185–3.679 | [52] |
Niger Delta Region of Nigeria | 16 | BDL to 1821.5 | [28] |
Middle region of Huaihe River. Chian | 16 | 0.072–0.139 | [53] |
Isfahan, Iran | 16 | 0.058–11.730 (2.001) | [54] |
Hoogly and Brahmaputra river, India | 16 | 0.00–0.636 | [55] |
Semi-arid city of Xi’an in Northwest China | 16 | 0.391–10.652 (2.053) | [9] |
Buffalo River Estuary South Africa | 16 | 1.107–22.310 | [18] |
River of Taihu Lake, China | 16 | 5.736–69.363 | [30] |
South Part of Al-HammerMarsh, Southern Iraq | 16 | 0.0428–0.434 | [56] |
White Nile, East Africa | 16 | 0.566–0.674 | [48] |
Damodar basin, India | 16 | 0.00–0.582 | [4] |
Oturuba River Niger Delta | 16 | 23.461–89.886 (42.607 ± 14.30) | This study |
PAHs Molecular Ratios | Diagnostic Ratio | Sources | Reference | Range for This Study |
---|---|---|---|---|
AN/(AN + Phen) | <0.1 | Petroleum | [68] | 0.3–0.8 |
>0.1 | Combustion | |||
Flur/(Flur + Pye) | <0.4 | Petrogenic | [69] | 0.2–0.8 |
0.4–0.5 | Fuel combustion | |||
>0.5 | Coal, grass and wood burning | |||
BaA/(BaA + Chry) | <0.2 | Petrogenic | [66] | 0.5–0.9 |
0.2–0.35 | Fuel combustion | |||
>0.35 | Coal, grass and wood burning | |||
In/(In + BgP) | <0.2 | Petrogenic | [67] | 0.3–1.0 |
0.2–0.5 | Fuel combustion (crude oil or vehicular emission) | |||
>0.5 | Coal, grass and wood-burning | |||
LMW/HMW | >1.0 | Petrogenic | [18] | 0.2–0.3 |
<1.0 | Pyrogenic |
PAHs | PC-1 (42.4%) | PC-2 (16.3%) | PC-3 (9.7%) |
---|---|---|---|
Nap | 0.796 | −0.178 | 0.452 |
Acy | 0.722 | −0.407 | 0.392 |
Ace | 0.818 | −0.272 | 0.306 |
Flu | 0.400 | 0.175 | 0.461 |
Phe | 0.741 | −0.209 | −0.335 |
Ant | 0.609 | 0.314 | |
Flt | 0.615 | 0.541 | 0.142 |
Pyr | 0.339 | 0.503 | −0.271 |
BaA | 0.725 | 0.321 | 0.188 |
Chry | 0.148 | 0.544 | −0.141 |
BbF | 0.537 | 0.662 | −0.282 |
BkF | 0.793 | −0.238 | −0.479 |
BaP | 0.660 | −0.622 | |
DahA | 0.837 | −0.326 | |
BghiP | 0.749 | −0.251 | −0.341 |
IndP | 0.465 | 0.514 | 0.297 |
Assessment Method | BaA | Chry | BbF | BkF | BaP | DahA | IndP | Total | Mean ± Stdev |
---|---|---|---|---|---|---|---|---|---|
BaPTEC | 35.161 | 0.120 | 35.210 | 0.589 | 155.139 | 40.207 | 11.269 | 277.695 | 6.94 ± 4.36 |
BaPMEQ | 28.832 | 2.045 | 88.026 | 6.477 | 155.139 | 11.66 | 34.933 | 327.112 | 8.18 ± 4.05 |
604.807 | 15.12 ± 8.41 |
Adult | ||||
---|---|---|---|---|
ILCRing | ILCRDerm | ILCRInh | Total Cancer Risk | |
∑PAHs7c | 1.73 × 10−4 | 2.29 × 10−3 | 1.30 × 10−11 | 2.46 × 10−3 |
Min | 1.40 × 10−6 | 3.31 × 10−5 | 2.00 × 10−13 | 3.25 × 10−5 |
Max | 8.10 × 10−6 | 1.24 × 10−4 | 7.00 × 10−13 | 1.32 × 10−4 |
Mean | 4.30 × 10−6 | 5.72 × 10−5 | 3.00 × 10−13 | 6.15 × 10−5 |
Child | ||||
ILCRing | ILCRDerm | ILCRInh | Total cancer risk | |
∑PAHs7c | 2.67 × 10−3 | 7.25 × 10−3 | 3.18 × 10−12 | 9.93 × 10−3 |
Min | 2.85 × 10−5 | 8.11 × 10−5 | 4.00 × 10−14 | 1.10 × 10−4 |
Max | 2.24 × 10−4 | 7.20 × 10−4 | 1.70 × 10−13 | 9.44 × 10−4 |
Mean | 6.70 × 10−5 | 1.81 × 10−4 | 8.00 × 10−14 | 2.48 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howard, I.C.; Okpara, K.E.; Techato, K. Toxicity and Risks Assessment of Polycyclic Aromatic Hydrocarbons in River Bed Sediments of an Artisanal Crude Oil Refining Area in the Niger Delta, Nigeria. Water 2021, 13, 3295. https://doi.org/10.3390/w13223295
Howard IC, Okpara KE, Techato K. Toxicity and Risks Assessment of Polycyclic Aromatic Hydrocarbons in River Bed Sediments of an Artisanal Crude Oil Refining Area in the Niger Delta, Nigeria. Water. 2021; 13(22):3295. https://doi.org/10.3390/w13223295
Chicago/Turabian StyleHoward, Ibigoni C., Kingsley E. Okpara, and Kuaanan Techato. 2021. "Toxicity and Risks Assessment of Polycyclic Aromatic Hydrocarbons in River Bed Sediments of an Artisanal Crude Oil Refining Area in the Niger Delta, Nigeria" Water 13, no. 22: 3295. https://doi.org/10.3390/w13223295
APA StyleHoward, I. C., Okpara, K. E., & Techato, K. (2021). Toxicity and Risks Assessment of Polycyclic Aromatic Hydrocarbons in River Bed Sediments of an Artisanal Crude Oil Refining Area in the Niger Delta, Nigeria. Water, 13(22), 3295. https://doi.org/10.3390/w13223295