Evaluation of Thermal Stratification and Flow Field Reproduced by a Three-Dimensional Hydrodynamic Model in Lake Biwa, Japan
<p>(<b>a</b>) The location of Lake Biwa in Japan; (<b>b</b>) the location of rivers; (<b>c</b>) the water depth of Lake Biwa.</p> "> Figure 1 Cont.
<p>(<b>a</b>) The location of Lake Biwa in Japan; (<b>b</b>) the location of rivers; (<b>c</b>) the water depth of Lake Biwa.</p> "> Figure 2
<p>Time series of (<b>a</b>) Air temperature; (<b>b</b>) Wind speed; and (<b>c</b>) Short-wave radiation for boundary conditions from 2007 to 2012.</p> "> Figure 3
<p>Vertical distribution of the mean value and standard deviation of the water temperature from 2007 to 2011 at the monitoring point in Imazu-oki in (<b>a</b>) April to June; (<b>b</b>) July to September; (<b>c</b>) October to December; and (<b>d</b>) January to March.</p> "> Figure 4
<p>Time series of short-wave radiation, net long-wave radiation, latent heat flux, and sensible heat flux from 2007 to 2012.</p> "> Figure 5
<p>Time series of observed and simulated water temperature at depths of 0.5 m, 20 m, and 90 m at the monitoring point in Imazu-oki.</p> "> Figure 6
<p>Seasonal change in vertical distribution of simulated water temperature (Color contour: Temperature (°C)) (<b>a</b>) 3 April; (<b>b</b>) 4 June; (<b>c</b>) 6 August; (<b>d</b>) 1 October; (<b>e</b>) 3 December; and (<b>f</b>) 4 February.</p> "> Figure 6 Cont.
<p>Seasonal change in vertical distribution of simulated water temperature (Color contour: Temperature (°C)) (<b>a</b>) 3 April; (<b>b</b>) 4 June; (<b>c</b>) 6 August; (<b>d</b>) 1 October; (<b>e</b>) 3 December; and (<b>f</b>) 4 February.</p> "> Figure 7
<p>Inter-annual change of (<b>a</b>) the vertical water distribution and (<b>b</b>) the thickness of the thermocline at the monitoring point in Imazu-oki in the observation; and (<b>c</b>) the vertical water distribution and (<b>d</b>) the thickness of the thermocline at the same point in the simulation.</p> "> Figure 7 Cont.
<p>Inter-annual change of (<b>a</b>) the vertical water distribution and (<b>b</b>) the thickness of the thermocline at the monitoring point in Imazu-oki in the observation; and (<b>c</b>) the vertical water distribution and (<b>d</b>) the thickness of the thermocline at the same point in the simulation.</p> "> Figure 8
<p>Flow field in each layer from May of 2007 to January of 2008 (<b>a</b>) 20 May; (<b>b</b>) 17 July; (<b>c</b>) 8 September; (<b>d</b>) 25 November; (<b>e</b>) 22 January.</p> "> Figure 8 Cont.
<p>Flow field in each layer from May of 2007 to January of 2008 (<b>a</b>) 20 May; (<b>b</b>) 17 July; (<b>c</b>) 8 September; (<b>d</b>) 25 November; (<b>e</b>) 22 January.</p> ">
Abstract
:1. Introduction
2. Hydrodynamic Model in Lake Biwa
2.1. Calculation Domain
2.2. Hydrodynamic Model
2.3. Initial Conditions
2.4. Boundary Conditions
2.4.1. Meteorological Conditions
2.4.2. River Conditions
2.5. The Method of Evaluation of the Reproducibility of the Three-Dimensional Hydrodynamic Model
3. Results and Discussions
3.1. Comparison between Model Results and Observations
3.1.1. Evaluation of the Reproducibility of the Three-Dimensional Hydrodynamic Model
3.1.2. Water Temperature from the Surface to the Bottom Layers
3.2. General Model Results
3.2.1. Seasonal Change of the Structure of Stratification at the Monitoring Point in Imazu-Oki
3.2.2. Inter-Annual Change of the Vertical Distribution of Water Temperature at the Monitoring Point in Imazu-Oki
3.2.3. Flow Field in the Lake
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Livingstone, D.M. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Chang. 2003, 57, 205–225. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Straile, D.; Jöhnk, K.; Rossknecht, H. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnol. Oceanogr. 2003, 48, 1432–1438. [Google Scholar] [CrossRef]
- Brooks, A.S.; Zastrow, J.C. The potential influence of climate change on offshore primary production in Lake Michigan. Great Lakes Res. 2002, 28, 597–607. [Google Scholar] [CrossRef]
- Livingstone, D.M. A change of climate provokes a change of paradigm: Taking leave of two tacit assumptions about physical lake forcing. Int. Rev. Hydrobiol. 2008, 93, 404–414. [Google Scholar] [CrossRef]
- Coats, R.; Perez-Losada, J.; Schladow, G.; Richards, R.; Goldman, C. The warming of Lake Tahoe. Clim. Chang. 2006, 76, 121–148. [Google Scholar] [CrossRef]
- Danis, P.A.; Von Grafenstein, U.; Masson-Delmotte, V.; Planton, S.; Gerdeaux, D.; Moisselin, J.M. Vulnerability of two European lakes in response to future climate changes. Geophys. Res. Lett. 2004, 31, L21507. [Google Scholar] [CrossRef]
- Matzinger, A.; Schmid, M.; Veljanoska-Sarafiloska, E.; Patceva, S.; Guseska, D.; Wagner, B.; Müller, B.; Sturm, M.; Wüest, A. Eutrophication of ancient Lake Ohrid: Global warming amplifies detrimental effects of increased nutrient inputs. Limnol. Oceanogr. 2007, 52, 338–353. [Google Scholar] [CrossRef]
- Endoh, S.; Yamashita, S.; Kawakami, M.; Okumura, Y. Recent warming of Lake Biwa water. Jpn. J. Limnol. 1999, 60, 223–228. (In Japanese) [Google Scholar] [CrossRef]
- Peeters, F.; Livingstone, D.M.; Goudsmit, G.-H.; Kipfer, R.; Forster, R. Modeling 50 years of historical temperature profiles in a large central European lake. Limnol. Oceanogr. 2002, 47, 186–197. [Google Scholar] [CrossRef]
- Arhonditsis, G.B.; Brett, M.T.; DeGasperi, C.L.; Schindler, D.E. Effects of climatic variability on the thermal properties of Lake Washington. Limnol. Oceanogr. 2004, 49, 256–270. [Google Scholar] [CrossRef]
- Yoshimizu, T.; Yoshiyama, K.; Tayasu, I.; Koitabashi, T.; Nagata, T. Vulnerability of a large monomictic lake (Lake Biwa) to warm winter event. Limnology 2010, 11, 233–239. [Google Scholar] [CrossRef]
- Stocker, R.; Imberger, J. Horizontal transport and dispersion in the surface layer of a medium-sized lake. Limnol. Oceanogr. 2003, 48, 971–982. [Google Scholar] [CrossRef]
- Saggio, A.; Imberger, J. Internal wave weather in a stratified lake. Limnol. Oceanogr. 1998, 43, 1780–1795. [Google Scholar] [CrossRef]
- Shimizu, K.; Imberger, J.; Kumagai, M. Horizontal structure and excitation of primary motions in a strongly stratified lake. Limnol. Oceanogr. 2007, 52, 2641–2655. [Google Scholar] [CrossRef]
- Shimizu, K.; Imberger, J. Energetics and damping of basin-scale internal waves in a strongly stratified lake. Limnol. Oceanogr. 2008, 53, 1574–1588. [Google Scholar] [CrossRef]
- Kitazawa, D.; Ishikawa, T.; Kumagai, M. The analysis by the numerical simulation about the effects of the climate change for the past 50 years on an ecological system. Inst. Ind. Sci. 2010, 62, 45–49. (In Japanese) [Google Scholar]
- Kitazawa, D.; Kumagai, M.; Hasegawa, N. Effects of Internal Waves on Dynamics of Hypoxic Waters in Lake Biwa. J. Korean Soc. Mar. Environ. Eng. 2010, 13, 30–42. [Google Scholar]
- Fer, I.; Lemmin, U.; Thorpe, S.A. Observations of mixing near the sides of a deep lake in winter. Limnol. Oceanogr. 2002, 47, 535–544. [Google Scholar] [CrossRef]
- Akitomo, K.; Tanaka, K.; Kumagai, M.; Jiao, C. Annual cycle of circulations in Lake Biwa, part 1: Model validation. Limnology 2009, 10, 105–118. [Google Scholar] [CrossRef]
- Akitomo, K.; Tanaka, K.; Kumagai, M. Annual cycle of circulations in Lake Biwa, part 2: Mechanisms. Limnology 2009, 10, 119–129. [Google Scholar] [CrossRef]
- Kumagai, M.; Vincent, W.F.; Ishikawa, K.; Aota, Y. Lessons from Lake Biwa and Other Asian Lakes: Global and Local Perspectives, Freshwater Management, Global Versus Local Perspectives; Springer: Tokyo, Japan, 2003; Chapter 1; pp. 1–22. [Google Scholar]
- Akitomo, K.; Kurogi, M.; Kumagai, M. Numerical study of a thermally induced gyre system in Lake Biwa. Limnology 2004, 5, 103–114. [Google Scholar] [CrossRef]
- Kitazawa, D.; Kumagai, M. Numerical simulation on seasonal variation in dissolved oxygen tension in Lake Biwa. In Proceedings of the 2nd Joint Japan/Korea Workshop on Marine Environmental Engineering, Kasuga, Japan, 21–22 October 2005; pp. 71–90. [Google Scholar]
- Gholami, V.; Chau, K.W.; Fadaee, F.; Tarkaman, J.; Ghaffari, A. Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. J. Hydrol. 2015, 529, 1060–1069. [Google Scholar] [CrossRef]
- Taormina, R.; Chau, K.W.; Sivakumar, B. Neural network river forecasting through baseflow separation and binary-coded swarm optimization. J. Hydrol. 2015, 529, 1788–1797. [Google Scholar] [CrossRef]
- Wu, C.L.; Chau, K.W.; Fan, C. Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J. Hydrol. 2010, 389, 146–167. [Google Scholar] [CrossRef]
- Kantha, L.H.; Clayson, C.A. An improved mixed layer model for geophysical applications. J. Geophys. Res. 1994, 99, 25235–25266. [Google Scholar] [CrossRef]
- Goudsmit, G.H.; Burchard, H.; Peeters, F.; Wüest, A. Application of k-ϵ turbulence models to enclosed basins: The role of internal seiches. J. Geophys. Res. Oceans 2002, 107, 3230–3242. [Google Scholar] [CrossRef]
- MacIntyre, S.; Clark, J.F.; Jellison, R.; Fram, J.P. Turbulent mixing induced by nonlinear internal waves in Mono Lake, California. Limnol. Oceanogr. 2009, 54, 2255–2272. [Google Scholar] [CrossRef]
- Ishizuka, H.; Kitazawa, D.; Konno, A. A Feasibility Study of Turbulence Models for Numerical Simulation of Physical Environment in Lake Biwa. In Proceedings of the 19th Symposium in Computational Fluid Dynamics, Tokyo, Japan, 13–15 December 2005; pp. 1–10. (In Japanese). [Google Scholar]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 1982, 20, 851–875. [Google Scholar] [CrossRef]
- Burchard, H.; Baumert, H. On the performance of a mixed-layer model based on the κ–ϵ turbulence closure. J. Geophys. Res. 1995, 100, 8523–8540. [Google Scholar] [CrossRef]
- Munk, W.H.; Anderson, E.R. Notes on a theory of the thermocline. J. Mar. Res. 1948, 7, 276–295. [Google Scholar]
- Webb, E.K. Profile relationships: The log-linear range, and extension to strong stability. Q. J. R. Meteorol. Soc. 1970, 96, 67–90. [Google Scholar] [CrossRef]
- Kondo, J. Fundamentals of the surface heat balance. In Meteorology of Water Environment; Asakura Publishing: Tokyo, Japan, 1994; Chapter 6; pp. 132–159. (In Japanese) [Google Scholar]
- Kondo, J. Air-sea bulk transfer coefficients in diabatic conditions. Bound. Layer Meteorol. 1975, 9, 91–112. [Google Scholar] [CrossRef]
- Hirose, N.; Kim, C.H.; Yoon, J.H. Heat budget in the Japan Sea. J. Oceanogr. 1996, 52, 553–574. [Google Scholar] [CrossRef]
- Shrestha, K.L.; Kondo, A. Assessment of the Water Resource of the Yodo River Basin in Japan Using a Distributed Hydrological Model Coupled with WRF Model. In Environmental Management of River Basin Ecosystems; Part of the Series Springer Earth System Sciences; Springer: Berlin, Germany, 2015; pp. 137–160. [Google Scholar]
- Endoh, S.; Okumura, Y. Gyre system in Lake Biwa derived from recent current measurements. Limnology 1993, 54, 191–197. [Google Scholar] [CrossRef]
- Emercy, K.O.; Csanady, G.T. Surface circulation of lakes and nearly land-locked seas. Proc. Natl. Acad. Sci. USA 1973, 70, 93–97. [Google Scholar] [CrossRef]
All Layers | Seasonal Index | Annual Index | |||
Spring | Summer | Autumn | Winter | ||
r | 0.95 | 0.98 | 0.96 | 0.88 | 0.97 |
MAE (°C) | 0.9 | 1.1 | 1.2 | 1.3 | 1.1 |
MB (°C) | 0.5 | 0.0 | 1.1 | 1.3 | 0.7 |
0.5 m | Seasonal Index | Annual Index | |||
Spring | Summer | Autumn | Winter | ||
r | 0.97 | 0.92 | 0.99 | 0.91 | 0.99 |
MAE (°C) | 1.1 | 1.7 | 0.6 | 0.9 | 1.1 |
MB (°C) | 0.6 | −1.7 | 0.1 | 0.9 | 0.0 |
20 m | Seasonal Index | Annual Index | |||
Spring | Summer | Autumn | Winter | ||
r | 0.81 | 0.62 | 0.61 | 0.62 | 0.87 |
MAE (°C) | 0.8 | 1.5 | 1.9 | 1.4 | 1.4 |
MB (°C) | −0.3 | 0.6 | 1.9 | 1.4 | 0.9 |
90 m | Seasonal Index | Annual Index | |||
Spring | Summer | Autumn | Winter | ||
r | −0.04 | 0.06 | 0.20 | 0.70 | 0.27 |
MAE (°C) | 0.6 | 0.4 | 0.5 | 1.1 | 0.7 |
MB (°C) | 0.4 | 0.3 | 0.5 | 1.1 | 0.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koue, J.; Shimadera, H.; Matsuo, T.; Kondo, A. Evaluation of Thermal Stratification and Flow Field Reproduced by a Three-Dimensional Hydrodynamic Model in Lake Biwa, Japan. Water 2018, 10, 47. https://doi.org/10.3390/w10010047
Koue J, Shimadera H, Matsuo T, Kondo A. Evaluation of Thermal Stratification and Flow Field Reproduced by a Three-Dimensional Hydrodynamic Model in Lake Biwa, Japan. Water. 2018; 10(1):47. https://doi.org/10.3390/w10010047
Chicago/Turabian StyleKoue, Jinichi, Hikari Shimadera, Tomohito Matsuo, and Akira Kondo. 2018. "Evaluation of Thermal Stratification and Flow Field Reproduced by a Three-Dimensional Hydrodynamic Model in Lake Biwa, Japan" Water 10, no. 1: 47. https://doi.org/10.3390/w10010047
APA StyleKoue, J., Shimadera, H., Matsuo, T., & Kondo, A. (2018). Evaluation of Thermal Stratification and Flow Field Reproduced by a Three-Dimensional Hydrodynamic Model in Lake Biwa, Japan. Water, 10(1), 47. https://doi.org/10.3390/w10010047