Spatial and Temporal Distribution of Phosphorus in Plateau River Sediments and Sediment–Water Interface: A Case Study of the Yarlung Zangbo River
<p>Study catchment and sample site locations.</p> "> Figure 2
<p>Box plot of water quality indicators (pH, temperature, TP, and DO) by region.</p> "> Figure 3
<p>Proportion of particulate total phosphorus (PTP) and dissolved total phosphorus (DTP) in the Yarlung Zangbo River water during the wet and dry seasons.</p> "> Figure 4
<p>The distribution and proportion of phosphorus forms in the sampling sediments. (<b>A</b>) Phosphorus form results in the wet season; (<b>B</b>) Phosphorus form results in the dry season; (<b>C</b>) Distribution of phosphorus forms in sediment during the wet season; (<b>D</b>) Distribution of phosphorus forms in sediment during the dry season.</p> "> Figure 5
<p>Distribution of phosphorus forms in the basin during wet and dry seasons.</p> "> Figure 6
<p>TOC content of the sampling sediment: (<b>A</b>) TOC content of the sediment in the wet season; (<b>B</b>) TOC content of the sediment in the dry season.</p> "> Figure 7
<p>Distribution of TN and TN–TP ratio in the Yarlung Zangbo River during the wet season.</p> "> Figure 8
<p>(<b>A</b>) Pearson analysis of total phosphorus (TP), dissolved total phosphorus (DTP), pH, temperature (T), TP (sediment), and land type in waters, and (<b>B</b>) Land use of the Yarlung Zangbo River basin.</p> "> Figure 9
<p>Correlation between sediment TOC and phosphorus components: (<b>A</b>) during the wet season; (<b>B</b>) during the dry season.</p> "> Figure 10
<p>Comparison of sediment phosphorus components in plateau rivers and plains water bodies (<b>A</b>,<b>B</b>). Plateau river: Yarlung Zangbo River; Plains lakes: Lake Taihu; Plains rivers: Hanjiang River, Lancang River, Sihe River, and Orontes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Sample Measurement
3. Results
3.1. Changes in Water Chemistry and Phosphorus Content in the Yarlung Zangbo River
3.2. Distribution of Phosphorus Forms and TOC in Sediments
4. Discussion
4.1. Impact of Land Use Type on the Nitrogen and Phosphorus in the Yarlung Zangbo River
4.2. Impact of TOC on Phosphorus Deposition and Source Effects Under Seasonal Cycling
4.3. Analysis of Phosphorus Sedimentation Characteristics and Risk Sources in Plateau Rivers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ansari, A.A.; Gill, S.S.; Lanza, G.R.; Rast, W. (Eds.) Eutrophication: Causes, Consequences and Control; Springer Science & Business Media: Dordrecht, The Netherlands, 2010; Volume 1. [Google Scholar]
- Némery, J.; Garnier, J. The fate of phosphorus. Nat. Geosci. 2016, 9, 343–344. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Davies, P.S. Sources and bioavailability of phosphorus fractions in freshwaters: A British perspective. Biol. Rev. 2001, 76, 27–64. [Google Scholar] [CrossRef] [PubMed]
- Jarvie, H.P.; Neal, C.; Withers, P.J.A. Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus? Sci. Total Environ. 2006, 360, 246–253. [Google Scholar] [CrossRef] [PubMed]
- House, W.A.; Denison, F.H. Nutrient dynamics in a lowland stream impacted by sewage effluent: Great Ouse, England. Sci. Total Environ. 1997, 205, 25–49. [Google Scholar] [CrossRef] [PubMed]
- Carey, C.C.; Rydin, E. Lake trophic status can be determined by the depth distribution of sediment phosphorus. Limnol. Oceanogr. 2011, 56, 2051–2063. [Google Scholar] [CrossRef]
- Markovic, S.; Liang, A.; Watson, S.B.; Guo, J.; Mugalingam, S.; Arhonditsis, G.; Morley, A.; Dittrich, M. Biogeochemical mechanisms controlling phosphorus diagenesis and internal loading in a remediated hard water eutrophic embayment. Chem. Geol. 2019, 514, 122–137. [Google Scholar] [CrossRef]
- Lukkari, K.; Hartikainen, H.; Leivuori, M. Fractionation of sediment phosphorus revisited. I: Fractionation steps and their biogeochemical basis. Limnol. Oceanogr. Methods 2007, 5, 433–444. [Google Scholar] [CrossRef]
- Jin, X.; Wang, S.; Pang, Y.; Chang Wu, F. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environ. Pollut. 2006, 139, 288–295. [Google Scholar] [CrossRef]
- Fiedler, M. The Effects of Land Use on Concentrations of Nutrients and Selected Metals in Bottom Sediments and the Risk Assessment for Rivers of the Warta River Catchment, Poland. Land 2021, 10, 589. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, F.; Sun, S.; Zhu, B.; Wang, P. Sources and transformations of nitrate in Qixiangcuo Lake and its inflow rivers in the northern Tibetan Plateau. Environ. Sci. Pollut. Res. 2023, 30, 4245–4257. [Google Scholar] [CrossRef]
- Van Dael, T.; Vermeiren, C.; Smolders, E. Internal loading of phosphorus in streams described by a Sediment-Water Exchange Model for Phosphorus (SWEMP): From lab to field scale. Sci. Total Environ. 2024, 912, 168912. [Google Scholar] [CrossRef] [PubMed]
- Spears, B.M.; Carvalho, L.; Perkins, R.; Kirika, A.; Paterson, D.M. Sediment phosphorus cycling in a large shallow lake: Spatio-temporal variation in phosphorus pools and release. Hydrobiologia 2007, 584, 37–48. [Google Scholar] [CrossRef]
- Moss, B. Allied attack: Climate change and eutrophication. Inland Waters 2011, 1, 101–105. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, L.; Lu, X.; Yan, Y. Characteristics of Soil Nutrients and Their Ecological Stoichiometry in Different Land Use Types in the Nianchu River Basin. Land 2022, 11, 1001. [Google Scholar] [CrossRef]
- Fox, G.A.; Purvis, R.A.; Penn, C.J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 2016, 181, 602–614. [Google Scholar] [CrossRef]
- Potapova, M.G.; Charles, D.F. Benthic diatoms in USA rivers: Distributions along spatial and environmental gradients. J. Biogeogr. 2002, 29, 167–187. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, N.; Zhou, X.; Pan, B.; Liu, W.; Tian, S.; Wang, Z. Macroinvertebrate Biodiversity Trends and Habitat Relationships within Headwater Rivers of the Qinghai-Tibet Plateau. Water 2018, 10, 1214. [Google Scholar] [CrossRef]
- Wu, Z.; Zhu, W.; Guo, H.; Zhang, Y.; Shen, C.; Guo, J.; Liu, M.; Zhao, T.; Teng, H.; Zhu, W.; et al. Effects of Soil Nutrient Restoration Aging and Vegetation Recovery in Open Dumps of Cold and Arid Regions in Xinjiang, China. Land 2024, 13, 1690. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Z.; Pan, B.; Yu, G. The assemblage characteristics of benthic macroinvertebrates in the Yalutsangpo River, the highest major river in the world. Front. Earth Sci. 2014, 8, 351–361. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, Y.; Hu, M.; Hu, P.; Wu, N.; Qu, X.; Liu, X.; Huang, W.; Wen, J.; Li, S.; et al. Deciphering the impact of cascade reservoirs on nitrogen transport and nitrate transformation: Insights from multiple isotope analysis and machine learning. Water Res. 2025, 268, 122638. [Google Scholar] [CrossRef]
- Purushothaman, P.; Mishra, S.; Das, A.; Chakrapani, G.J. Sediment and hydro biogeochemistry of Lake Nainital, Kumaun Himalaya, India. Environ. Earth Sci. 2012, 65, 775–788. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, G.; Ye, C.; Liu, W. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau. J. Hazard. Mater. 2019, 361, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Sun, M.; Wang, Y.; Hu, M.; Hu, P.; Wu, L.; Huang, W.; Li, S.; Wen, J.; Wang, Z.; et al. Nitrate transformation and source tracking of Yarlung Tsangpo River using a multi-tracer approach combined with Bayesian stable isotope mixing model. Environ. Res. 2024, 252, 118925. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Lu, H.; Feng, W.; Guan, Y.; Xue, Y. Large decrease in streamflow and sediment load of Qinghai–Tibetan Plateau driven by future climate change: A case study in Lhasa River Basin. CATENA 2020, 187, 104340. [Google Scholar] [CrossRef]
- Li, X.; Zhang, P.; Yang, Q.; Liu, H.; Chao, X.; Yang, S.; Ba, S. Distribution Patterns and Driving Factors of the Phytoplankton Community in the Middle Reaches of the Yarlung Zangbo River. Sustainability 2023, 15, 7162. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, F.; Liu, C.; Fu, P.; Li, W.; Wang, L.; Liao, H.; Guo, J. Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China. Environ. Pollut. 2008, 152, 366–372. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, L.; Chen, M.; Li, J.; Zhang, L.; Zhang, J.; Liao, N. Release and transformation of phosphorus in sediment following seasonal freezing-thawing cycles. J. Contam. Hydrol. 2022, 247, 103978. [Google Scholar] [CrossRef]
- Chao, X.; Li, X.; Yang, Q.; Liu, H.; Yang, S.; Ba, S. Seasonal succession characteristics of phytoplankton functional groups in the upper and middle reaches of the Yarlung Zangbo River as an indicator of water environment. J. Ecol. 2023, 6, 1779–1788. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, Z.; Liu, X. Spatial and temporal changes of land use in Yarlung Zangbo River Basin from 1980 to 2015. China Rural Water Resour. Hydropower 2019, 3, 106–111. [Google Scholar]
- Ruban, V.; López-Sánchez, J.F.; Pardo, P.; Rauret, G.; Muntau, H.; Quevauviller, P. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments—A synthesis of recent works. Fresenius J. Anal. Chem. 2001, 370, 224–228. [Google Scholar] [CrossRef]
- Jordan, P.; McElarney, Y.; Cassidy, R. The farmgate phosphorus balance as a measure to achieve river and lake water quality targets. J. Environ. Manag. 2024, 372, 123427. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Wang, Y.; Du, P.; Shui, Y.; Cai, A.; Lv, C.; Bao, Y.; Li, Y.; Li, S.; Zhang, P. Tracing the sources of nitrate in the rivers and lakes of the southern areas of the Tibetan Plateau using dual nitrate isotopes. Sci. Total Environ. 2019, 658, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Wang, S. Effect of organic matter on sorption of phosphorus on sediment in Western Liaohe River. China Environ. Sci. 2012, 32, 687–694. [Google Scholar]
- Williamson, T.N.; Dobrowolski, E.G.; Kreiling, R.M. Phosphorus sources, forms, and abundance as a function of streamflow and field conditions in a Maumee River tributary, 2016-2019. J. Environ. Qual. 2023, 52, 492–507. [Google Scholar] [CrossRef]
- Yin, H.; Yin, P.; Yang, Z. Seasonal sediment phosphorus release across sediment-water interface and its potential role in supporting algal blooms in a large shallow eutrophic Lake (Lake Taihu, China). Sci. Total Environ. 2023, 896, 165252. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, Y.; Li, R.; Pu, X.; Huang, W.; Yuan, X. Impacts of water temperature on phosphorus release of sediments under flowing overlying water. J. Contam. Hydrol. 2020, 235, 103717. [Google Scholar] [CrossRef]
- Liao, N.; Jiang, L.; Li, J.; Zhang, L.; Zhang, J.; Zhang, Z. Effects of Freeze-Thaw Cycles on Phosphorus from Sediments in the Middle Reaches of the Yarlung Zangbo River. Int. J. Environ. Res. Public Health 2019, 16, 3783. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, M.; Yin, P.; Li, J. Characterization of internal phosphorus loading in the sediment of a large eutrophic lake (Lake Taihu, China). Water Res. 2022, 225, 119125. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, S.; Zhao, H.; Deng, L.; Wang, C.; Zhao, Q.; Dong, S. The phosphorus speciations in the sediments up- and down-stream of cascade dams along the middle Lancang River. Chemosphere 2015, 120, 653–659. [Google Scholar] [CrossRef]
- Tian, J.-r.; Zhou, P.-j. Phosphorus fractions and adsorption characteristics of floodplain sediments in the lower reaches of the Hanjiang River, China. Environ. Monit. Assess. 2008, 137, 233–241. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Jia, C.; Gan, Y.; Wang, S. The morphology and spatial distribution of phosphorus in sediments of Sihe River system. Environ. Sci. 2022, 43, 3587–3596. [Google Scholar] [CrossRef]
- Aydin, I.; Aydin, F.; Hamamci, C. Phosphorus Speciation in the Surface Sediment and River Water from the Orontes (Asi) River, Turkey. Water Environ. Res. 2010, 82, 2265–2271. [Google Scholar] [CrossRef] [PubMed]
- Soro, M.P.; N’Goran, K.M.; Ouattara, A.A.; Yao, K.M.; Kouassi, N.L.B.; Diaco, T. Nitrogen and phosphorus spatio-temporal distribution and fluxes intensifying eutrophication in three tropical rivers of Cote d’Ivoire (West Africa). Mar. Pollut. Bull. 2023, 186, 114391. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Zhang, T.Q.; Zhao, Y.C.; Ciborowski, J.J.H.; Zhao, Y.M.; O’Halloran, I.P.; Qi, Z.M.; Tan, C.S. Characterization of sedimentary phosphorus in Lake Erie and on-site quantification of internal phosphorus loading. Water Res. 2021, 188, 116525. [Google Scholar] [CrossRef]
Lake Taihu | Lancang River | Hanjiang River | Sihe River | Orontes | |
---|---|---|---|---|---|
Region | Yangtze River Delta | Yunnan-Guizhou Plateau | Wuhan, China | Shandong, China | Syria Turkey |
Length (km) | / | 2139 | 1577 | 32 | 396 |
Basin Area (km2) | 36,900 | 190,000 | 159,000 | 101,554 | / |
Altitude (m) | 228 | 1207 | 35 | 35 | 84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Bao, Y.; Chen, Z.; Wang, Y.; Hu, M.; Lasong, Z.; Lamu, C.; Cai, A.; Wang, Z. Spatial and Temporal Distribution of Phosphorus in Plateau River Sediments and Sediment–Water Interface: A Case Study of the Yarlung Zangbo River. Water 2025, 17, 484. https://doi.org/10.3390/w17040484
Liu X, Bao Y, Chen Z, Wang Y, Hu M, Lasong Z, Lamu C, Cai A, Wang Z. Spatial and Temporal Distribution of Phosphorus in Plateau River Sediments and Sediment–Water Interface: A Case Study of the Yarlung Zangbo River. Water. 2025; 17(4):484. https://doi.org/10.3390/w17040484
Chicago/Turabian StyleLiu, Xiangwei, Yufei Bao, Zhuo Chen, Yuchun Wang, Mingming Hu, Zeren Lasong, Cian Lamu, Aimin Cai, and Zhongjun Wang. 2025. "Spatial and Temporal Distribution of Phosphorus in Plateau River Sediments and Sediment–Water Interface: A Case Study of the Yarlung Zangbo River" Water 17, no. 4: 484. https://doi.org/10.3390/w17040484
APA StyleLiu, X., Bao, Y., Chen, Z., Wang, Y., Hu, M., Lasong, Z., Lamu, C., Cai, A., & Wang, Z. (2025). Spatial and Temporal Distribution of Phosphorus in Plateau River Sediments and Sediment–Water Interface: A Case Study of the Yarlung Zangbo River. Water, 17(4), 484. https://doi.org/10.3390/w17040484