Performance of Integrated Biofilm-Phytoremediation Process in Reclaiming Water from Domestic Wastewater
<p>(<b>a</b>) Schematic drawing of integrated biofilm-phytoremediation reactor. (<b>b</b>) Top view.</p> "> Figure 2
<p>Acclimatization process of the integrated reactor: (<b>a</b>) chemical oxygen demand (COD); (<b>b</b>) ammonia–nitrogen (NH<sub>3</sub>-N); (<b>c</b>) MLSS and MLVSS.</p> "> Figure 3
<p>NH<sub>3</sub>-N removal at various initial concentrations.</p> "> Figure 4
<p>Average removal of COD.</p> "> Figure 5
<p>Average removal of PO<sub>4</sub><sup>3−</sup>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Domestic Wastewater
2.2. Integrated Biofilm-Phytoremediation
2.2.1. Setup of the Integrated Biofilm-Phytoremediation Reactor
2.2.2. Performance of Integrated Biofilm-Phytoremediation Reactor
2.3. Analytical Methods
3. Results and Discussion
3.1. Characterization of Domestic Wastewater
3.2. Phase I: Acclimatization of the Bacteria in an Integrated Reactor
3.3. Phase II: Performance of Integrated Biofilm-Phytoremediation Process at Different Ammonia Concentrations
3.3.1. Removal of Ammonia–Nitrogen
3.3.2. Removal of Chemical Oxygen Demand
3.3.3. Removal of Phosphate
3.3.4. Comparison with Previous Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, F.; Liu, S.; Gu, X.; Wang, F. Highly efficient low-temperature biodegradation of nitrogenous pollutions in domestic wastewater via immobilized-microbial bioaugmentation coupled with hybrid membrane bioreactor. J. Chem. Eng. 2024, 485, 149705. [Google Scholar] [CrossRef]
- Ting, W.; Tan, I.; Salleh, S.; Wahab, N. Application of water hyacinth (Eichhornia crassipes) for phytoremediation of ammoniacal nitrogen: A review. J. Water Process Eng. 2018, 22, 239–249. [Google Scholar] [CrossRef]
- Edwards, T.M.; Puglis, H.J.; Kent, D.B.; Durán, J.L.; Bradshaw, L.M.; Farag, A.M. Ammonia and aquatic ecosystems—A review of global sources, biogeochemical cycling, and effects on fish. Sci. Total Environ. 2024, 907, 167911. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chang, H.; Yan, Z.; Liu, C.; Liang, Y.; Qu, F.; Liang, H.; Vidic, R.D. Review of ammonia recovery and removal from wastewater using hydrophobic membrane distillation and membrane contactor. Sep. Purif. Technol. 2024, 328, 125094. [Google Scholar] [CrossRef]
- Soliman, R.; Hamza, R.A.; Iorhemen, O.T. Biofilm-based hybrid systems for enhanced brewery wastewater treatment—A review. J. Water Process Eng. 2024, 58, 104763. [Google Scholar] [CrossRef]
- Murshid, S.; Antonysamy, A.; Dhakshinamoorthy, G.; Jayaseelan, A.; Pugazhendhi, A. A review on biofilm-based reactors for wastewater treatment: Recent advancements in biofilm carriers, kinetics, reactors, economics, and future perspectives. Sci. Total Environ. 2023, 892, 164796. [Google Scholar] [CrossRef]
- Hu, Y.; Mukherjee, M.; Cao, B. Biofilm-Biology-Informed Biofilm Engineering for Environmental Biotechnology. In Introduction to Biofilm Engineering; ACS Publications: Washington, DC, USA, 2019; Volume 3, pp. 59–82. [Google Scholar] [CrossRef]
- Espinosa-Ortiz, E.J.; Gerlach, R.; Peyton, B.M.; Roberson, L.; Yeh, D.H. Biofilm reactors for the treatment of used water in space: Potential, challenges, and future perspectives. Biofilm 2023, 6, 100140. [Google Scholar] [CrossRef]
- Jiang, S.; Shang, X.; Chen, G.; Zhao, M.; Kong, H.; Huang, Z.; Zheng, X. Effects of regular zooplankton supplement on the bacterial communities and process performance of biofilm for wastewater treatment. J. Environ. Manag. 2023, 345, 118933. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G. Cultivation of S. molesta Plants for Phytoremediation of Secondary Treated Domestic Wastewater. Ain Shams Eng. J. 2021, 12, 2585–2592. [Google Scholar] [CrossRef]
- Rahman, S.A.A.; Priyadharsini, P.; Marimuthu, C.; Sridhar, S.; Arun, J. Chapter 1—Bioremediation, phytoremediation, and mycoremediation of wastewater. Dev. Wastewater Treat. Res. Process. 2024, 1–12. [Google Scholar] [CrossRef]
- Soni, K.; Priyadharsini, P.; Dawn, S.S.; Nirmala, N.; Santhosh, A.; Ashima, B.; Arun, J. Phytoremediation of Metals and Radionuclides. In Modern Approaches in Waste Bioremediation; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 151–164. [Google Scholar] [CrossRef]
- He, X.; Zhang, S.; Lv, X.; Liu, M.; Ma, Y.; Guo, S. Eichhornia crassipes-rhizospheric biofilms contribute to nutrients removal and methane oxidization in wastewater stabilization ponds receiving simulative sewage treatment plants effluents. Chemosphere 2023, 322, 138100. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Xu, Z.; Li, J.; Chai, X. Removal of water nutrients by different aquatic plant species: An alternative way to remediate polluted rural rivers. Ecol. Eng. 2018, 110, 18–26. [Google Scholar] [CrossRef]
- Parihar, A.; Malaviya, P. Textile wastewater phytoremediation using Spirodela polyrhiza (L.) Schleid. assisted by novel bacterial consortium in a two-step remediation system. Environ. Res. 2023, 221, 115307. [Google Scholar] [CrossRef]
- Ren, Z.; Li, K.; Zhou, H.; Li, X.; Wang, Z.; Wang, H.; Han, S. The application of an integrated two-stage biofilm reactor treating dispersed domestic wastewater. J. Environ. Chem. Eng. 2022, 10, 108859. [Google Scholar] [CrossRef]
- Song, Z.; Hao, S.; Zhang, L.; Fan, Z.; Peng, Y. High-rate nitrogen removal by partial nitritation/anammox with a single-stage membrane-aerated biofilm reactor. J. Environ. Manag. 2024, 349, 119581. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Shi, J.; Yang, Y.; Ji, J.; Chen, R. A review of electro-conductive membrane enabled electrochemical anaerobic membrane bioreactor process for low-carbon wastewater treatment. J. Environ. Chem. Eng. 2024, 12, 113494. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Gu, J.; Zhang, M.; Liu, Y. Towards carbon neutrality and water sustainability: An integrated anaerobic fixed-film MBR-reverse osmosis-chlorination process for municipal wastewater reclamation. Chemosphere 2022, 287, 132060. [Google Scholar] [CrossRef]
- Zulkifli, M.; Abu Hasan, H.; Abdullah, S.R.S.; Muhamad, M.H. A Review of ammonia removal using a biofilm-based reactor and its challenges. J. Environ. Manag. 2022, 315, 115162. [Google Scholar] [CrossRef]
- Zulkifli, M.; Abu Hasan, H.; Abdullah, S.R.S.; Othman, A.R. Adaptation of Effective Consortium Bacteria for Ammonia Removal from Domestic Wastewater using Moving Bed Biofilm Reactor. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Van de Walle, A.; Kim, M.; Alam, K.; Wang, X.; Wu, D.; Dash, S.R.; Rabaey, K.; Kim, J. Greywater reuse as key enabler for improving urban wastewater management. Environ. Sci. Ecotechnol. 2023, 16, 100277. [Google Scholar] [CrossRef]
- Jagaba, A.; Kutty, S.; Lawal, I.; Abubakar, S.; Hassan, I.; Zubairu, I.; Umaru, I.; Abdurrasheed, A.; Adam, A.; Ghaleb, A.; et al. Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. J. Environ. Manag. 2021, 282, 111946. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zheng, Z.; Yang, X.; He, J.; Luo, X.; Gao, B. Mature landfill leachate treatment by the MBBR inoculated with biocarriers from a municipal wastewater treatment plant. Process Saf. Environ. Prot. 2018, 119, 304–310. [Google Scholar] [CrossRef]
- Saxena, V.; Padhi, S.K.; Jhunjhunwala, U. Treatment of domestic sewage and leachate using a moving bed hybrid bioreactor. Environ. Technol. Innov. 2021, 24, 101998. [Google Scholar] [CrossRef]
- Ng, Y.S.; Juinn, D.; Chan, C. The role and effectiveness of monoculture and polyculture phytoremediation systems in fish farm. RSC Adv. 2021, 11, 13853–13866. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Deswal, S. Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce, and duckweed to reduce phosphorus in rice mill wastewater. Int. J. Phytoremediation 2020, 22, 1097–1109. [Google Scholar] [CrossRef]
- Zainuddin, N.A.; Md Din, M.F.; Abdul Halim, K.; Abdul Salim, N.A.; Elias, S.H.; Mat Lazim, Z. The Phytoremediation using Water Hyacinth and Water Lettuce: Correlation between Sugar Content, Biomass Growth Rate, and Nutrients. J. Kejuruter. 2022, 34, 915–924. [Google Scholar] [CrossRef]
- Sayanthan, S.; Hasan, H.A.; Abdullah, S.R.S. Floating Aquatic Macrophytes in Wastewater Treatment: Toward a Circular Economy. Water 2024, 16, 870. [Google Scholar] [CrossRef]
- Nurdin, M.I.; Sukasri, A.; Damayanti, D. Efisiensi bio-ball pada teknologi fitio-biofilm dalam penurunan kadar ammonia pada air limbah domestik. SPIN-J. Kim. Pendidik. Kim. 2023, 5, 166–176. [Google Scholar] [CrossRef]
- Chen, T.; Yang, J.; Huang, B.; Liu, W.; Lu, C. Combined process of biofilm+roots for aquaculture wastewater remediation. IOP Conf. Ser. Earth Environ. Sci. 2020, 508, 012102. [Google Scholar] [CrossRef]
- Ticllasuca, A.; Matamoros, M.C.; Condori, E.S.; Román, F.T. Evaluation of efficiency of an integrated biofilm and phytoremediation system with Nasturtium officinale for the treatment of municipal wastewater in Huancavelica. Tayacaja 2021, 4, 22–28. [Google Scholar] [CrossRef]
- Utami, A.R. Penurunan kadar fosfat dalam limbah rumah sakit dengan menggunakan reaktor fitobiofilm. J. Teknol. Proses Inovasi Ind. 2018, 3, 17–22. [Google Scholar] [CrossRef]
- Imron, M.F.; Firdaus, A.A.F.; Flowerainsyah, Z.O.; Rosyidah, D.; Fitriani, N.; Kurniawan, S.B.; Abdullah, S.R.S.; Abu Hasan, H.; Wibowo, Y.G. Phytotechnology for domestic wastewater treatment: Performance of Pistia stratiotes in eradicating pollutants and future prospects. J. Water Process Eng. 2023, 51, 103429. [Google Scholar] [CrossRef]
- Auchterlonie, J.; Eden, C.L.; Sheridan, C. The phytoremediation potential of water hyacinth: A case study from Hartbeespoort Dam, South Africa. S. Afr. J. Chem. Eng. 2021, 37, 31–36. [Google Scholar] [CrossRef]
- Sayanthan, S.; Abu Hasan, H.; Buhari, J.; Abdullah, S.R.S. Treatment of domestic wastewater using free floating constructed wetlands assisted by Eichhornia crassipes and Pistia stratiotes. J. Ecol. Eng. 2024, 25, 237–252. [Google Scholar] [CrossRef]
Phase | Days of Operation | Operating Conditions | Initial Concentration * | |||||
---|---|---|---|---|---|---|---|---|
NH3-N | COD | PO43− | pH | SS | DO | |||
I | 24 | Acclimatization Stage I; using domestic wastewater | 0.11–22.82 | 0–78 | - | 6–7 | 33–82 | - |
83 | Acclimatization Stage II; using synthetic wastewater | <10 | <200 | - | 5–6 | 5–137 | - | |
II | 69 | NH3-N Concentration 1 (C1) | 11–13 | 28–61 | 1.98–4.34 | 6 | 37–40 | 2.67–5.66 |
23 | NH3-N Concentration 2 (C2) | 9–11 | 0–58 | 1.94–5.87 | 5–7 | 39–169 | 1.15–6.54 | |
17 | NH3-N Concentration 3 (C3) | 3–5 | 71–152 | 1.76–5.93 | 5–6 | 19–67 | 2.84–5.68 |
Influent | The Initial Concentration of Raw Domestic Wastewater |
---|---|
R1 | A tank of moving bed biofilm reactor (MBBR) containing Hexafilter media |
Output R1 | The effluent of R1 after 24 h and the remaining 12 L is transferred into the R2 tank |
R2 | A tank of phytoremediation containing water hyacinth |
Output R2 | The effluent of the overall performance of the integrated reactor after another 24 h |
Parameter | Domestic Wastewater Concentration | |||||||
---|---|---|---|---|---|---|---|---|
Q1 | Std | Q2 | Std | Q3 | Std | Q4 | Std | |
pH | 6.41 | 0.09 | 6.47 | 0.05 | 7.18 | 0.10 | 6.18 | 0.60 |
SS (mg/L) | 39 | 1.15 | 31 | 5.13 | 50 | 15.13 | 61 | 28.73 |
NH3-N (mg/L) | 15.18 | 3.98 | 13.24 | 7.38 | 22.63 | 2.42 | 26.12 | 6.93 |
PO43− (mg/L) | 3.19 | 1.18 | 4.56 | 0.76 | 5.41 | 0.39 | 5.41 | 0.85 |
NO2-N (mg/L) | 0.097 | 0.07 | 0.191 | 0.3 | 0.096 | 0.06 | 0.246 | 0.2 |
NO3-N (mg/L) | 3.9 | 1.42 | 3.6 | 1.96 | 4.3 | 1.23 | 4.8 | 1.72 |
COD (mg/L) | 49 | 26.66 | 66 | 49.22 | 160 | 8.74 | 153 | 39.05 |
Parameter | Phase I: Acclimatization Process | ||
---|---|---|---|
Stage I (Domestic Wastewater) | Stage II (Synthetic Wastewater) | ||
pH | Influent | 6.12–7.61 | 5.90–6.83 |
Effluent | 6.02–7.45 | 5.71–6.76 | |
SS (mg/L) | Influent | 33–82 | 5–137 |
Effluent | 14–49 | 1–78 | |
NH3-N (mg/L) | Influent | 0.11–22.82 | 2.12–10.49 |
Effluent | 0.01–22.69 | 0.02–1.72 | |
Removal (%) | 0–95.6 | 68.7–99.6 | |
COD (mg/L) | Influent | 0–78 | 21–200 |
Effluent | 0–69 | 0–35 | |
Removal (%) | 0–100 | 51–100 | |
MLSS (mg/L) |
| ||
MLVSS (mg/L) |
|
Parameters | C1 | C2 | C3 | |
---|---|---|---|---|
NH3-N | Influent (mg/L) | 12.66 | 9.95 | 4.05 |
Output R1 (%) | 81 | 94 | 92 | |
Output R2 (%) | 89 | 98 | 99 | |
COD | Influent (mg/L) | 40 | 17 | 123 |
Output R1 (%) | 72 | 80 | 66 | |
Output R2 (%) | 97 | 100 | 100 | |
PO43− | Influent (mg/L) | 3.28 | 3.55 | 4.34 |
Output R1 (%) | 19 | 57 | 22 | |
Output R2 (%) | 64 | 80 | 66 |
Treatment | Type of Wastewater | Aquatic Plant | Media Carriers | Initial Concentration (mg/L) | Pollutant Removals (%) | References |
---|---|---|---|---|---|---|
Phyto-Biofilm | Domestic | Water hyacinth | Hexafilter | NH3-N: 4.05–12.66 COD: 17–123 PO43−: 3.28–4.34 | NH3-N: 89–99 COD: 97–100 PO43−: 64–80 | This study (2025) |
Phyto-Biofilm | Domestic | Water hyacinth | Bio-ball | NH3-N: 4082.3 | NH3-N: 92.8 | [30] |
Phyto-Biofilm | Aquaculture | Watercress | Hemp cloth, cotton cloth, silk screen nylon cloth | NH3-N: 9.57 COD: 125.6 PO43−: 6.09 | NH3-N: 82.4 COD: 84.6 PO43−: 57.8 | [31] |
Phyto-Biofilm | Municipal | Watercress | Filtering material (Calcareous stuff) | COD: 344.6 | COD: 67 | [32] |
Phyto-Biofilm | Hospital | Water hyacinth | Broken tiles, black sand | PO43−: 2.21–3.12 | PO43−: 80 | [33] |
MBBR | Synthetic domestic | - | Hexafilter | NH3-N: 10 COD: 236–320 | NH3-N: 96.5 COD: 95.9 | [21] |
Phytoremediation | Domestic | Water lettuce | - | NH3-N: 4.4 COD: 226 TP: 0.43 | NH3-N: 46.4 COD: 99.8 TP: 80.4 | [34] |
Phytoremediation | Dam water | Water hyacinth | - | PO43−: 0.73–2.1 | PO43−: 93.8 | [35] |
Phytoremediation | Domestic | Water hyacinth | - | NH3-N: 6.62 COD: 37 PO43−: 2.54 | NH3-N: 97.4 COD: 54 PO43−: 68.5 | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buslima, F.A.; Abu Hasan, H.; Alias, J.; Jaganathan, J.S.; Buhari, J.; Subramanian, S.V.; Abdullah, S.R.S. Performance of Integrated Biofilm-Phytoremediation Process in Reclaiming Water from Domestic Wastewater. Water 2025, 17, 163. https://doi.org/10.3390/w17020163
Buslima FA, Abu Hasan H, Alias J, Jaganathan JS, Buhari J, Subramanian SV, Abdullah SRS. Performance of Integrated Biofilm-Phytoremediation Process in Reclaiming Water from Domestic Wastewater. Water. 2025; 17(2):163. https://doi.org/10.3390/w17020163
Chicago/Turabian StyleBuslima, Fairuz Afiqah, Hassimi Abu Hasan, Jahira Alias, Jaga Sahsiny Jaganathan, Junaidah Buhari, Suriya Vathi Subramanian, and Siti Rozaimah Sheikh Abdullah. 2025. "Performance of Integrated Biofilm-Phytoremediation Process in Reclaiming Water from Domestic Wastewater" Water 17, no. 2: 163. https://doi.org/10.3390/w17020163
APA StyleBuslima, F. A., Abu Hasan, H., Alias, J., Jaganathan, J. S., Buhari, J., Subramanian, S. V., & Abdullah, S. R. S. (2025). Performance of Integrated Biofilm-Phytoremediation Process in Reclaiming Water from Domestic Wastewater. Water, 17(2), 163. https://doi.org/10.3390/w17020163