The Response of Runoff to Land Use Change in the Northeastern Black Soil Region, China
<p>Location and elevations of the River Basin in Northeast Black Soil Region of China, gauging stations, weather stations, rivers, and the study area.</p> "> Figure 2
<p>Land use in 1980, 1990, 2000, 2010, and 2020 in River Basin in Northeast Black Soil Region, China.</p> "> Figure 3
<p>Land use transfer matrix from 1980 to 2020. The lines illustrate the conversion between different land use types across time periods, highlighting the dynamics of land use change.</p> "> Figure 4
<p>Annual runoff at the downstream outlet of the Songhua River under different scenarios (S0, S1, S2, S3, and S4).</p> "> Figure 5
<p>Monthly distribution of multi-year average water yield in the River Basin of Northeast Black Soil Region, China, under different scenarios (S0, S1, S2, S3, and S4).</p> "> Figure 6
<p>Runoff coefficient distribution in River Basin in Northeast Black Soil Region, China.</p> "> Figure 7
<p>The six hydrological variables expressed as a proportion of the mean annual precipitation are: groundwater contribution to streamflow (GWQ), lateral flow contribution to streamflow (LATQ), percolation beyond the root zone (PERC), surface runoff generated within the watershed (SURQ), and soil water (SW). The six hydrological variables expressed as a proportion of the mean annual precipitation are: groundwater contribution to streamflow (GWQ), lateral flow contribution to streamflow (LATQ), percolation beyond the root zone (PERC), surface runoff generated within the watershed (SURQ), soil water content (SW), and water yield (WYLD).</p> "> Figure 8
<p>Spatial distribution of seasonal water yield under different scenarios (S0, S1, S2, S3, and S4). Each subfigure (<b>a</b>–<b>d</b>) represents the water yield for spring, summer, autumn, and winter.</p> "> Figure 9
<p>Spatial distribution of absolute changes in seasonal water yield under different scenarios (S0, S1, S2, S3, and S4).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Data Sources
2.2.2. Land Use Transfer Matrix
2.2.3. SWAT Model
Model Construction
Model Evaluation
Scenario Setting
3. Results
3.1. Land Use Change Characteristics
3.1.1. Characterization of Changes in Land Use Dynamics
3.1.2. Characteristics of Land Use Type Shifts
3.2. Impacts on Runoff Under Land Use Change Scenarios
3.2.1. Characteristics of Inter-Annual Variability of Hydrological Elements Under Different Land Use Scenarios in the Northeast Black Soil Region
3.2.2. Characteristics of Inter-Annual Changes in Runoff in the Songhua River Basin Under Different Land Use Scenarios
3.3. Characteristics of Spatial Distribution of Runoff Under Different Land Use Scenarios in the Northeast Black Soil Region
3.3.1. Current Status of Runoff Distribution Characteristics in the Northeast Black Soil Region
3.3.2. Characteristics of Spatial Distribution of Runoff Under Different Land Use Scenarios in the Northeast Black Soil Region
4. Discussion
4.1. Impact of Land Use Type on Runoff
4.2. The Impact of Land Use Change on Runoff and Flood Risk and a Discussion of Model Applications
4.3. Inadequate Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xia, J.; Tan, G. Global changes and new developments and challenges in hydrological science. Resour. Sci. 2002, 24, 1–7. [Google Scholar]
- Liu, C. Discussion on several water resource issues in China in the 21st century. Water Resour. Hydropower Technol. 2002, 33, 15–19. [Google Scholar] [CrossRef]
- Fohrer, N.; Haverkamp, S.; Eckhardt, K.; Frede, H.-G. Hydrologic Response to land use changes on the catchment scale. Phys. Chem. Earth Part. B Hydrol. Ocean. Atmos. 2001, 26, 577–582. [Google Scholar] [CrossRef]
- He, R.; Wang, G.; Zhang, J. Impact of environmental changes on runoff in the Yiluo River Basin, middle reaches of the Yellow River. Res. Soil Water Conserv. 2007, 14, 297–298+301. [Google Scholar]
- Wu, J.; Miao, C.; Wang, Y.; Duan, Q.; Zhang, X. Contribution analysis of the long-term changes in seasonal runoff on the Loess Plateau, China, using eight Budyko-based methods. J. Hydrol. 2017, 545, 263–275. [Google Scholar] [CrossRef]
- Li, C.; Gao, J.; Cao, H. Research status and trends on the impact of land use change on water resources. Soils 2002, 34, 191–205. [Google Scholar] [CrossRef]
- Khorn, N.; Ismail, M.H.; Nurhidayu, S.; Kamarudin, N.; Sulaiman, M.S. Land use/land cover changes and its impact on runoff using SWAT model in the upper Prek Thnot watershed in Cambodia. Environ. Earth Sci. 2022, 81, 446. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Fang, S.; Jiang, W.; Wang, J. Research progress on the relationship between land use/land cover changes (LUCC) and environmental changes. Ecol. Environ. Sci. 2014, 23, 2013–2021. [Google Scholar] [CrossRef]
- Munoth, P.; Goyal, R. Impacts of land use land cover change on runoff and sediment yield of Upper Tapi River Sub-Basin, India. Int. J. River Basin Manag. 2019, 18, 177–189. [Google Scholar] [CrossRef]
- Liu, M.; Tian, H.; Chen, G.; Ren, W.; Zhang, C.; Liu, J. Effects of Land-Use and Land-Cover Change on Evapotranspiration and Water Yield in China During 1900–20001. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 1193–1207. [Google Scholar] [CrossRef]
- Serpa, D.; Nunes, J.; Santos, J.; Sampaio, E.; Jacinto, R.; Veiga, S.; Lima, J.; Moreira, M.; Corte-Real, J.; Keizer, J.; et al. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Sci. Total. Environ. 2015, 538, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Tocachi, B.F.; Buytaert, W.; De Bièvre, B.; Célleri, R.; Crespo, P.; Villacís, M.; Llerena, C.A.; Acosta, L.; Villazón, M.; Guallpa, M.; et al. Impacts of land use on the hydrological response of tropical Andean catchments. Hydrol. Process. 2016, 30, 4074–4089. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, L.; Wu, Q.; Soomro, S.-E.; Jian, S. Response of LUCC on Runoff Generation Process in Middle Yellow River Basin: The Gushanchuan Basin. Water 2020, 12, 1237. [Google Scholar] [CrossRef]
- Wan, R.; Yang, G. Influence of land use/cover change on storm runoff—A case study of Xitiaoxi River Basin in upstream of Taihu Lake Watershed. Chin. Geogr. Sci. 2007, 17, 349–356. [Google Scholar] [CrossRef]
- Shi, X.; Li, Y.; Yan, D.; Zhao, K. Research progress on the impact of watershed land use/cover change on hydrological processes. Res. Soil Water Conserv. 2013, 20, 301–308. [Google Scholar]
- Yan, L.L. Study on Land Use Changes and Their Impact on Surface Runoff in the Mountainous Area of the Shiyang River Basin. Master’s Thesis, Lanzhou University, Lanzhou, China, 2010. Available online: https://kns.cnki.net/kcms2/article/abstract?v=HjlF_Ii0mbkn8tfDyJl2Cmwna2l-6P7YIlAxeirwcMk7x8JXr8aAJugZQ--lzeoHiGjeYW80Go5-WXO8n1Ko9icwuinZ2mTCSLNJKA_kUQ8DMM0MaNfcyIkvBnZjvXZpp6_MbAk6Wkcsb2i670l4G4sul__uJ5N9vALEJwYO75J7GgFu1QSPkzCXR9GsOKrH&uniplatform=NZKPT&language=CHS (accessed on 7 October 2024).
- Niu, C.; Wang, H.; Jia, Y. The development of distributed hydrological models and their application in the study of China’s water issues. In China Sustainable Development Research Association (CSDRA) 2006, 2006 Annual Forum on China’s Sus-tainable Development: Rapid Economic Growth and China’s Resource and Environmental Problems; China Water Resources and Hydropower Research Institute: Beijing, China, 2006; p. 3. [Google Scholar]
- Ahn, K.-H.; Merwade, V. Quantifying the relative impact of climate and human activities on streamflow. J. Hydrol. 2014, 515, 257–266. [Google Scholar] [CrossRef]
- Tang, M.; Cao, S.; Hu, H.; Ren, X. Application and result analysis of MIKESHE in flood peak calculation for power plants. Yangtze River 2015, 46, 26–30. [Google Scholar] [CrossRef]
- Zhang, L.H. Optimization and Uncertainty Analysis of Runoff Parameters in the HSPF Model. Master’s Thesis, Zhejiang University, Hangzhou, China, 2016. Available online: https://kns.cnki.net/kcms2/article/abstract?v=HjlF_Ii0mbmcvNgcsJEr5Y3f8ybFX92e6vU9Lw4snV__h7JYXEWQQU_GXu1vlXA368J65xPBq2YiyjpcGO_cl9XFIt446pJ2RQnNF1gEb6iazuEHxbQ12fHjpY05xTjJYb1wIJmnImqcMz4g3bMcYRE-Xltzbo-gvPsY7N0e6Bi-HIzMaCpDRmZbJpjOPjDbVlljwfN9YN8=&uniplatform=NZKPT&language=CHS (accessed on 7 October 2024).
- Liu, W. Hydrological Simulation and Runoff Response Analysis Based on the SWAT Model. Ph.D. Thesis, Northwest University, Xi’an, China, 2014. Available online: https://kns.cnki.net/kcms2/article/abstract?v=HjlF_Ii0mbkXNS6zS_-lHxyeChvYJjkPCXi6vmIH8M_fZ_NLRAM0Vei8o-XIkW0wLid7kgw1cglof47d3iePZPGXrXYWeKc145ntc9RRymxBRNDjJewBO78_Src93dSl6GzyHARg8aNKBUScivrg8txiLQ5410AEJZU1amvsgoU1MAzFIM-MFdiFWvpoW10CPAWnNGDXdPw=&uniplatform=NZKPT&language=CHS (accessed on 7 October 2024).
- Zhang, L. Study on SWAT Model Parameter Optimization and Runoff Effects of Land Use Change. Master’s Thesis, Northwest A&F University, Xianyang, China, 2016. Available online: https://kns.cnki.net/kcms2/article/abstract?v=HjlF_Ii0mbnHWJyDWvjEDSuz5gyjv2tv9WoUc7TFzzF76H20dy-zy4eSLh-WGC0tmKmw2kf0gmx5-8QhlCIUl13NDTeDwjF8MKecIu8zE6WKSiVmur5JjSaYq2LrB9Wi4MHnYq145IqtGL0FiYssonyoTCCkT989ilLKZty0qKBNdNAac3ThUoZ2mp9_nd8HUt5Fj3PHJB4=&uniplatform=NZKPT&language=CHS (accessed on 8 October 2024).
- Memarian, H.; Balasundram, S.K.; Abbaspour, K.C.; Talib, J.B.; Sung, C.T.B.; Sood, A.M. SWAT-based hydrological modelling of tropical land-use scenarios. Hydrol. Sci. J. 2014, 59, 1808–1829. [Google Scholar] [CrossRef]
- Yang, W.; Long, D.; Bai, P. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China. J. Hydrol. 2019, 570, 201–219. [Google Scholar] [CrossRef]
- Hu, J.; Wu, Y.; Wang, L.; Sun, P.; Zhao, F.; Jin, Z.; Wang, Y.; Qiu, L.; Lian, Y. Impacts of land-use conversions on the water cycle in a typical watershed in the southern Chinese Loess Plateau. J. Hydrol. 2021, 593, 125741. [Google Scholar] [CrossRef]
- China Engineering Academy “Northeast Water Resources” Project Team; Qian, Z.; Shen, G.; Shi, Y. Study on strategic issues related to water and soil resource allocation, ecological and environmental protection, and sustainable development in Northeast China. Eng. Sci. 2006, 1–24. Available online: https://kns.cnki.net/kcms2/article/abstract?v=YMwpULBJqz6yyHH1A5jNfMqywZVF-rgkpgUA_zvFTiYzv5zvzfgL0T8t9tdkpZdLxNiWliJBp4P6PFEra8wnAKygzBL48ceMe_ZE28IwLrbGz06qXNUulPFQUSBH_tAU7eR4Hnz4EtyPfRW9e7yPu1bq10VMX2gQ_nHwtFTWlpLKLzmJ-jMe1A6ZACsphGKy&uniplatform=NZKPT&language=CHS (accessed on 8 November 2024).
- Zhao, X. Impact of climate change on agriculture in Northeast China over the past 50 years. J. Northeast. Agric. Univ. 2010, 41, 144–149. [Google Scholar]
- Liu, X. Study on natural conditions and comprehensive agricultural development in the Sanjiang Plain: Dedicated to the 30th anniversary of the Institute of Geography, Chinese Academy of Sciences. Sci. Geogr. Sin. 1988, 3, 201–207+295. [Google Scholar]
- Cui, X.; Lei, G.; Wang, T.; Hao, N.; Fu, H.; Li, B. Impact of the Grain for Green Project on soil erosion in the Luo River Basin. Res. Soil Water Conserv. 2016, 23, 68–73. [Google Scholar] [CrossRef]
- Li, G.; Zhao, W.; Wei, Y.; Fang, X.; Gao, B.; Dai, L. Impact of the Natural Forest Protection Project on the forest ecosystem services in the Changbai Mountain region. Acta Ecol. Sin. 2015, 35, 984–992. [Google Scholar]
- Liu, D. Spatiotemporal Characteristics and Environmental Effects of Land Use/Cover Change in the Sanjiang Plain over the Past 50 Years. Ph.D. Thesis, Jilin University, Changchun, China, 2006. [Google Scholar]
- Tan, K.; Piao, S.; Peng, C.; Fang, J. Satellite-based estimation of biomass carbon stocks for northeast China’s forests between 1982 and 1999. For. Ecol. Manag. 2007, 240, 114–121. [Google Scholar] [CrossRef]
- Li, F.; Zhang, G.; Xu, Y.J. Spatiotemporal variability of climate and streamflow in the Songhua River Basin, northeast China. J. Hydrol. 2014, 514, 53–64. [Google Scholar] [CrossRef]
- Gao, X.; Niu, C.; Chen, Y.; Yin, X. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin. Environ. Monit. Assess. 2013, 186, 2375–2391. [Google Scholar] [CrossRef]
- Liu, T. Simulation Study on Land Use Changes and Their Impact on Regional Temperature in the Agro-Forestry Transitional Zone of Northeast China. Ph.D. Thesis, Graduate School of Chinese Academy of Sciences, Northeast Institute of Geography and Agroecology, Changchun, China, 2012. [Google Scholar]
- Xiao, Y. Chinese Academy of Sciences Resource and Environment Science Data Center. DataHub, OpenGMS. 2020. Available online: https://geomodeling.njnu.edu.cn/dataHub/501b290c-c621-4631-a227-955e1ea70697 (accessed on 8 October 2024).
- Chen, Y.Y.; Yang, K.; He, J.; Qin, J.; Shi, J.C.; Du, J.Y.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. 2011, 116, D20104. [Google Scholar] [CrossRef]
- Iacono, M.; Levinson, D.; El-Geneidy, A.; Wasfi, R. A Markov chain model of land use change. TeMA J. Land Use Mobil. Environ. 2015, 8, 263–276. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, C.; Huang, Y. Principles, structure, and application research of the SWAT model. Prog. Geogr. 2003, 22, 79–86. [Google Scholar]
- Morris, M.D. Factorial sampling plans for preliminary computational experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for sys-tematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Lv, L.; Wang, X.; Jiang, Y.; Sun, C. Spatiotemporal distribution characteristics of blue water and green water in the Dongjiang River Basin based on the SWAT model. Water Resour. Prot. 2017, 33, 53–60. [Google Scholar] [CrossRef]
- Li, F. Hydrological and Water Resource Responses in the Songhua River Basin under Changing Environmental Conditions. Ph.D. Thesis, Graduate School of the Chinese Academy of Sciences, Northeast Institute of Geography and Agroecology, Changchun, China, 2015. [Google Scholar]
- Mokhtar, A.; He, H.; Alsafadi, K.; Li, Y.; Zhao, H.; Keo, S.; Bai, C.; Abuarab, M.; Zhang, C.; Elbagoury, K.; et al. Evapotranspiration as a response to climate variability and ecosystem changes in southwest, China. Environ. Earth Sci. 2020, 79, 312. [Google Scholar] [CrossRef]
- Wei, C.; Dong, X.; Ma, Y.; Zhao, W.; Yu, D.; Tayyab, M.; Bo, H. Impacts of Land Use Types, Soil Properties, and Topography on Baseflow Recharge and Prediction in an Agricultural Watershed. Land 2022, 12, 109. [Google Scholar] [CrossRef]
- Singh, V.; Gupta, R.K.; Kahlon, M.S.; Toor, A.S.; Singh, K.B.; Al-Ansari, N.; Mattar, M.A. Effect of Different Tillage and Residue Management Options on Soil Water Transmission and Mechanical Behavior. Land 2023, 12, 1895. [Google Scholar] [CrossRef]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecol. Process. 2016, 5, 16. [Google Scholar] [CrossRef]
- Acreman, M.; Holden, J. How Wetlands Affect Floods. Wetlands 2013, 33, 773–786. [Google Scholar] [CrossRef]
- Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, M.R.; Sabaghzadeh, M.; Niazkar, M. Evaluation of Snowmelt Impacts on Flood Flows Based on Remote Sensing Using SRM Model. Water 2023, 15, 1650. [Google Scholar] [CrossRef]
- Galatowitsch, S.M. Natural and Anthropogenic Drivers of Wetland Change. In The Wetland Book; Finlayson, C., Milton, G., Prentice, R., Davidson, N., Eds.; Springer: Dordrecht, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Batey, T. Soil compaction and soil management—A review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Pierret, A.; Maeght, J.-L.; Clément, C.; Montoroi, J.-P.; Hartmann, C.; Gonkhamdee, S. Understanding deep roots and their functions in ecosystems: An advocacy for more unconventional research. Ann. Bot. 2016, 118, 621–635. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Yan, J.; Liu, R.; Zhang, X.; Fan, S. Patterns of deep fine root and water utilization amongst trees, shrubs and herbs in subtropical pine plantations with seasonal droughts. Front. Plant Sci. 2023, 14, 1275464. [Google Scholar] [CrossRef]
- Bwire, D.; Saito, H.; Mugisha, M.; Nabunya, V. Water Productivity and Harvest Index Response of Paddy Rice with Alternate Wetting and Drying Practice for Adaptation to Climate Change. Water 2022, 14, 3368. [Google Scholar] [CrossRef]
- Bwire, D.; Saito, H.; Sidle, R.C.; Nishiwaki, J. Water Management and Hydrological Characteristics of Paddy-Rice Fields under Alternate Wetting and Drying Irrigation Practice as Climate Smart Practice: A Review. Agronomy 2024, 14, 1421. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Hirschboeck, K.K.; Brown, P. Integrating Remote Sensing and Ground Methods to Estimate Evapotranspiration. Crit. Rev. Plant Sci. 2007, 26, 139–168. [Google Scholar] [CrossRef]
- Sahin, V.; Hall, M.J. The effects of afforestation and deforestation on water yields. J. Hydrol. 1996, 178, 293–309. [Google Scholar] [CrossRef]
- Li, L.; Jiang, D.; Li, J.; Liang, L.; Zhang, L. Advances in hydrological response to land use/land cover change. J. Nat. Resour. 2007, 22, 211–224. [Google Scholar]
- Zhang, M.; Wei, X. The cumulative effects of forest disturbance on streamflow in a large watershed in the central interior of British Columbia, Canada. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 2855–2895. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, S. Effects of soil compaction on soil properties and plant growth. For. Sci. Technol. Dev. 2010, 24, 15–17. [Google Scholar]
- Bao, W.; He, B.; Bao, W.; Ding, D. Study on the interception effect of forest vegetation on precipitation. Res. Soil Water Conserv. 2004, 11, 193–197. [Google Scholar]
- Zhang, L.; Zhang, Y. Effects of deforestation and its conversion on soil properties. In Proceedings of the Conference on Physical Geography and Ecological Construction, Urumqi, China, 11–12 August 2006; Chinese Academy of Sciences Institute of Geographic Sciences and Natural Resources Research: Beijing, China, 2006; p. 4. [Google Scholar]
- Fan, S.; Han, S. Experimental study on the effects of surface slope on runoff. Bull. Soil Water Conserv. 1991, 11, 6–10. [Google Scholar] [CrossRef]
- Di, N. Spatiotemporal Variation of Populus Tomentosa Root Traits and Characteristics and Mechanisms of Soil Water Absorption and Utilization. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar] [CrossRef]
- Shi, P.; Li, W. Effects of forest vegetation changes on hydrological processes and runoff. J. Nat. Resour. 2001, 16, 481–487. [Google Scholar]
- Cheng, X.; Qu, Y.; Yu, M.; Wu, C.; Yuan, W. Impact of vegetation cover changes on hydrological effects in the Qujiang River Basin. J. Ecol. Environ. 2017, 26, 1829–1835. [Google Scholar] [CrossRef]
- Zhao, Q.; Tan, X.; Zeng, Q.; Zhao, H.; Wu, J.-W.; Huang, J.-S. Combined effects of temperature and precipitation on the spring runoff generation process in a seasonal freezing agricultural watershed. Environ. Earth Sci. 2021, 80, 490. [Google Scholar] [CrossRef]
- Cai, M. Analysis of the Spatiotemporal Variation of Water Yield in Hangzhou Affected by Land Use and Climate Change. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2021. [Google Scholar] [CrossRef]
- Wang, Z. Land Use Pattern Changes in the Heihe Oasis and Their Impact on Regional Evapotranspiration. Ph.D. Thesis, Central China Normal University, Wuhan, China, 2015. [Google Scholar]
- Mu, H. Study on the Expansion of Impervious Surfaces and Its Ecological Effects in a Karst Mountain City. Ph.D. Thesis, Guizhou Normal University, Guiyang, China, 2020. [Google Scholar] [CrossRef]
- Nan, N. Impact of LUCC on Eco-Hydrological Processes in the Sihu Basin. Ph.D. Thesis, Central China Normal University, Wuhan, China, 2014. [Google Scholar]
- Zhang, Y.; Huang, C.; Zhang, W.; Chen, J.; Wang, L. The concept, approach, and future research of hydrological connectivity and its assessment at multiscales. Environ. Sci. Pollut. Res. 2021, 28, 52724–52743. [Google Scholar] [CrossRef]
- Shen, G. Study on Crop Distribution Patterns Adapting to Climate Change. Ph.D. Thesis, University of Chinese Academy of Sciences, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China, 2017. [Google Scholar]
- Mu, X.; Zhao, Y.; Liu, H.; He, G. Progress in runoff evolution research under the impact of climate change and human activities. People’s Yellow River 2021, 42, 35–41. [Google Scholar]
- Duan, L.L. Impact of Climate, Forest Coverage, and Permafrost Changes on River Runoff in the Greater Khingan Range. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2017. Available online: https://kns.cnki.net/kcms2/article/abstract?v=HjlF_Ii0mbn9OGbyjl8TWTGz49QBqC7Nj8mUC9nCt7fniYtsA39DkrIUCVsI36Sm2G7_XU08D9aqSf9x_7LRqDiaeSHAOu9zHkaMT-uD-Z92YGdy6xG-P2XeSUV_xfhU5S05evv-sldreY3CI8d6dQPtStnTg_wAxY9gxweADgaOjpmGaNRPpX6QO3YAyYbzx3QP9ulFOkY=&uniplatform=NZKPT&language=CHS (accessed on 9 October 2024).
- Li, Z.W. Flood Disaster Risk Assessment of the Lijiang River Basin Based on the SWAT Model. Master’s Thesis, Guilin University of Technology, Guilin, China, 2023. [Google Scholar] [CrossRef]
- Zhang, X. Analysis of the impact of water-saving irrigation technologies on water resource utilization efficiency in agricultural irrigation. Hebei Agric. Mach. 2024, 103–105. [Google Scholar] [CrossRef]
- Wu, Y. A review of hydrological regulation functions of watershed wetlands. Adv. Water Sci. 2021, 32, 458–469. [Google Scholar] [CrossRef]
- Guo, L. Brief analysis of land resource management and comprehensive land use planning in the new era. North China Nat. Resour. 2022, 136–138. Available online: https://kns.cnki.net/kcms2/article/abstract?v=YMwpULBJqz48WDjBrTnfXhAz6dXtLlMtyKTeLK_aW89RIcfLkOspfIzDyiqF-big0kFWyusUuRC5ymDDrF5UWdn0Gj9Iz5lqejtQRUiu-XrUyCkSpIjvL2l7siWdd_N7uKwo4etyDHXA8aOnXGAU7fZTW96f3EZiBKWfCm75_iVZ6bxzeoVlPyGumJnzzZIK&uniplatform=NZKPT&language=CHS (accessed on 9 October 2024).
- Jia, S.; Lyu, A.; Zhu, W.; Gojenko, B. Integrated River Basin Management. In Water Resources in the Lancang-Mekong River Basin: Impact of Climate Change and Human Interventions; Chen, D., Liu, J., Tang, Q., Eds.; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
Parameter | Physical Significance | Range | Hydrologic Station | |||||
---|---|---|---|---|---|---|---|---|
Fulaerji | Dalai | Gaolichengzi | Hanyangtun | Jiamusi | Linghai | |||
R_CN2 | SCS runoff curve number f | (−0.5, 0.5) | 0.26 | 0 | −0.27 | 0.42 | 0.05 | |
V_GW_REVAP | Groundwater revap coefficient | (0.02, 0.2) | 0.15 | 0.02 | 0.02 | 0.09 | 0.02 | 0.02 |
V_GW_DELAY | Groundwater delay (days) | (0, 500) | 31 | 31 | 31 | 239 | 31 | 31 |
V_RCHRG_DP | Deep aquifer percolation fraction | (0, 1) | 0.91 | 0.05 | 0.88 | 0.24 | 0.05 | 0.62 |
V_ALPHA_BF | Baseflow alpha factor (days) | (0, 1) | 0.54 | 0.048 | 0.048 | 0.3 | 0.048 | 0.048 |
V_REVAPMN | Threshold depth of water in the shallow aquifer for revap to occur (mm) | (0, 500) | 360 | 750 | 63.09 | 750 | 750 | 15.5 |
V_GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | (0, 5000) | 3923 | 1000 | 1899 | 1418 | 1000 | 1000 |
V_SLSUBBSN | Average slope length | (10, 150) | 117.55 | 121.95 | 91.46 | 123.43 | 121.95 | 121.95 |
V_ESCO | Soil evaporation compensation factor | (0, 1) | 0.69 | 0.95 | 0.98 | 0.95 | 0.95 | 0.07 |
V_CANMX | Maximum canopy storage | (0, 100) | 3.78 | 0 | 3.63 | 0 | 0 | 7.3 |
R_HRU_SLP | Average slope steepness | (0, 1) | 0 | 0 | 0 | 0.11 | 0 | 0 |
V_SLSOIL | Slope length for lateral subsurface flow | (0, 150) | 75.66 | 0 | 2.97 | 58.62 | 0 | 95.55 |
V_EPCO | Plant uptake compensation factor | (0, 1) | 0.89 | 1 | 1 | 0.5 | 1 | 0.82 |
V_OV_N | Manning’s n value for overland flow | (0.01, 30) | 0.1 | 0.1 | 1.62 | 24.36 | 0.1 | 28.42 |
V_CH_N2 | Manning’s ‘n’ value for the main channel | (0, 0.5) | 0.25 | 0.014 | 0.014 | 0.014 | 0.014 | 0.014 |
V_CH_K2 | Effective hydraulic conductivity in main channel alluvium | (0, 500) | 51.37 | 0 | 0 | 274.97 | 0 | 0 |
V_ALPHA_BNK | Baseflow alpha factor for bank storage | (0, 1) | 0.19 | 0 | 0 | 0 | 0 | 0 |
V_TIMP | Snowpack temperature lag factor | (0, 1) | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 |
V_SFTMP | Snowfall temperature | (−20, 20) | 4.89 | 4.89 | 4.89 | 4.89 | 4.89 | 4.89 |
R_SOL_AWC | Available water capacity of the soil layer | (−1, 1) | 0.7 | 0 | 0.75 | 0.93 | 0 | 0.73 |
R_SOL_K | Saturated hydraulic conductivity | (−0.5, 1) | 0.56 | 0 | 0.29 | 0.98 | 0 | 0.78 |
Scenario | Description |
---|---|
S0 | Baseline scenario using 2020 land use data |
S1 | Land use restored to the 1980 status |
S2 | Land use restored to the 1990 status |
S3 | Land use restored to the 2000 status |
S4 | Land use restored to the 2010 status |
Type\Year | 1980 | 1990 | 2000 | 2010 | 2020 |
---|---|---|---|---|---|
Paddy field | 3.00% | 3.31% | 3.83% | 4.10% | 4.76% |
Dry farmland | 24.43% | 25.30% | 27.39% | 27.67% | 28.01% |
Forest land | 39.85% | 39.29% | 38.17% | 40.06% | 39.59% |
Pasture | 18.50% | 17.63% | 16.56% | 14.53% | 13.14% |
Water area | 2.22% | 2.37% | 2.24% | 2.22% | 1.97% |
Construction land | 2.18% | 2.37% | 2.42% | 2.74% | 3.06% |
Unused land | 2.37% | 2.53% | 2.50% | 2.76% | 2.65% |
Wetland | 7.44% | 7.20% | 6.90% | 5.92% | 6.83% |
Scenario | Water Yield | Surface Runoff | Groundwater Runoff | Evapotranspiration |
---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | |
S1 | 87.19 | 34.58 | 41.78 | 441.17 |
S2 | 93.60 | 36.85 | 44.65 | 435.11 |
S3 | 89.75 | 37.90 | 41.05 | 438.86 |
S4 | 95.76 | 39.16 | 45.00 | 431.19 |
S0 | 96.26 | 39.81 | 44.78 | 430.5 |
LUCC (km2) | S1 | S2 | S3 | S4 | S0 |
---|---|---|---|---|---|
Paddy field | 224,229 | 231,409 | 255,131 | 258,887 | 257,533 |
Dry farmland | 3923 | 10,718 | 17,136 | 17,346 | 25,091 |
Forestland | 301,937 | 286,632 | 270,932 | 287,024 | 282,690 |
Pasture | 82,159 | 76,426 | 67,829 | 53,603 | 48,649 |
Water area | 2366 | 2674 | 2503 | 2346 | 2123 |
Construction land | 1256 | 1348 | 1467 | 1616 | 1997 |
Unused land | 10,040 | 15,761 | 14,518 | 13,668 | 12,902 |
Wetland | 37,051 | 37,995 | 33,446 | 28,471 | 31,981 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Qi, P.; Du, C. The Response of Runoff to Land Use Change in the Northeastern Black Soil Region, China. Water 2024, 16, 3456. https://doi.org/10.3390/w16233456
Hao Y, Qi P, Du C. The Response of Runoff to Land Use Change in the Northeastern Black Soil Region, China. Water. 2024; 16(23):3456. https://doi.org/10.3390/w16233456
Chicago/Turabian StyleHao, Yonggang, Peng Qi, and Chong Du. 2024. "The Response of Runoff to Land Use Change in the Northeastern Black Soil Region, China" Water 16, no. 23: 3456. https://doi.org/10.3390/w16233456
APA StyleHao, Y., Qi, P., & Du, C. (2024). The Response of Runoff to Land Use Change in the Northeastern Black Soil Region, China. Water, 16(23), 3456. https://doi.org/10.3390/w16233456