Movements and Home Ranges of an Endangered Freshwater Fish, Pseudobagrus brevicorpus, and the Impact of River Management
<p>Map of study sites. The right panel’s red color shading is the tracking area for the radio telemetry. Black and white symbols in the left panel indicate habitat-characteristics measurement sites. Black circle, Gokgang Stream; White circle, Jaho Stream; Black triangle, Daega Stream; White triangle, Nam River.</p> "> Figure 2
<p>Estimations of MCP and home ranges of 14 <span class="html-italic">P. brevicorpus</span>. Blue shading indicates the water channels of the study sites, and the black dashed line is the riparian line. Black, yellow, and red solid lines denote MCP, KDE 95%, and KDE 50%, respectively.</p> "> Figure 3
<p>Diel movement of <span class="html-italic">P. brevicorpus</span>. No. 4 and No. 5 were tracked twice during the monitoring. Blue shading indicates the water channels of the study sites, and the black dashed line is the riparian line. Circles mean detection points and arrows indicate movement direction.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Periods
2.2. Physico-Chemical Characteristics of Streams
2.3. Radio Tagging
2.4. Fish Tracking and Movement Analysis
2.5. Data Analysis
3. Results
3.1. Physico-Chemical Characteristics
3.2. Movement and Home Range
3.3. Diel Movement
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butchart, S.; Walpole, M.; Collen, B.; Van Strien, A.; Scharlemann, J.; Almond, R.; Baillie, J.; Bertzky, B.; Brown, C.; Bruno, J.; et al. Global Biodiversity: Indicators of Recent Declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef] [PubMed]
- Joppa, L.; O’Connor, B.; Visconti, P.; Smith, C.; Geldmann, J.; Hoffmann, M.; Watson, J.; Butchart, S.; Virah-Sawmy, M.; Halpern, B.; et al. Filling in biodiversity threat gaps. Science 2016, 352, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Northcote, T.G. Migratory strategies and production in freshwater fishes. In Ecology of Freshwater Production; Gerking, S.D., Ed.; Blackwell: Oxford, UK, 1978; pp. 326–359. [Google Scholar]
- Northcote, T.G. Mechanisms of fish migration in rivers. In Mechanisms of Migration in Fishes; McCleave, J.D., Dodson, J.J., Neill, W.H., Eds.; Plenum: New York, NY, USA, 1984; pp. 317–355. [Google Scholar]
- Lucas, M.C.; Baras, E. Migration of Freshwater Fishes; Blackwell Science: Oxford, UK, 2001. [Google Scholar]
- Cardinale, B.; Duffy, J.; Gonzalez, A.; Hooper, D.; Perrings, C.; Venail, P.; Narwani, A.; Tilman, D.; Wardle, D.; Kinzig, A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Dudgeon, D.; Arthington, A.; Gessner, M.; Kawabata, Z.-I.; Knowler, D.; Lévêque, C.; Naiman, R.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.; et al. Freshwater Biodiversity: Importance, Threats, Status and Conservation Challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Pringle, C.M. Hydrologic connectivity and the management of biological reserves: A global perspective. Ecol. Appl. 2001, 11, 981–998. [Google Scholar] [CrossRef]
- Song, M.-Y.; Jung, S.-Y.; Kim, K.-H.; Baek, J.-M.; Lee, W.-O. Characteristics of Fish Fauna and Community Structure in Daecheon Stream in Boryeong, Korea. Korean J. Environ. Ecol. 2013, 27, 437–448. [Google Scholar]
- Kenward, R. A Manual for Wildlife Radio Tagging, 2nd ed.; Academic Press: London, UK, 2001. [Google Scholar]
- IUCN Red List of Ecosystems (IUCN RLE). Available online: https://assessments.iucnrle.org/ (accessed on 3 March 2023).
- Darwall, W.; Freyhof, J. Lost fishes, who is counting? The extent of the threat to freshwater fish biodiversity. In Freshwater Fish Conservation: Options for the Future; Closs, G.P., Krkosek, M., Olden, J.D., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 1–36. [Google Scholar] [CrossRef]
- Helfman, G. Fish Conservation: A Guide to Understanding and Restoring Global Aquatic Biodiversity and Fishery Resources; Island Press: Washington, DC, USA, 2007. [Google Scholar]
- Sala, O.; Chapin, F.S., III; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sannwald, E.; Huenneke, L.; Jackson, R.; Kinzig, A.P.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Ministry of Environment (ME). Conservation and Management Laws of Wildlife (Law No. 737); ME: Sejong City, Republic of Korea, 2023. (In Korean) [Google Scholar]
- Belletti, B.; Garcia de Leaniz, C.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; van de Bund, W.; Aarestrup, K.; Barry, J.; et al. More than one million barriers fragment Europe’s rivers. Nature 2020, 588, 436–441. [Google Scholar] [CrossRef]
- Grift, R.E.; Buijse, A.D.; van Densen, W.L.T.; Breteler, J.G.P.K. Restoration of the river-floodplain interaction: Benefits for the fish community in the River Rhine. Large Rivers 2001, 12, 173–185. [Google Scholar] [CrossRef]
- Water Resources Management Information System (WAMIS). Available online: http://wamis.go.kr/dic/dic_main.do (accessed on 3 March 2023).
- Allan, J.D. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Lau, J.; Lauer, T.; Weinman, M. Impacts of Channelization on Stream Habitats and Associated Fish Assemblages in East Central Indiana. Am. Midl. Nat. 2006, 156, 319–330. [Google Scholar] [CrossRef]
- Sudduth, E.; Hassett, B.; Cada, P.; Bernhardt, E. Testing the Field of Dreams Hypothesis: Functional Responses to Urbanization and Restoration in Stream Ecosystems. Ecol. Appl. 2011, 21, 1972–1988. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Kang, Y.-H.; Hong, G.-B.; Yoo, D.-U.; Suk, H.-Y.; Chae, B.-S.; Kim, H.-S.; Hwang, U.-W. Ichthyofauna and Community Structure from 21 Lakes in the Yeungnam Area including Gyeongsangbuk-do and Gyeongsangnam-do Provinces, Korea. Korean J. Ichthyol. 2011, 23, 288–299. [Google Scholar]
- Yoo, D.-J.; Han, K.-H.; Lee, S.-H.; Yim, H.-S.; Hwang, J.-H.; Lee, J.; Kang, K.-W. Ichthyofauna collected from reservoirs in Pohang-si, Gyeongsangbuk-do. J. Korean Fish. Soc. 2008, 41, 363–370. [Google Scholar] [CrossRef]
- Cultural Heritage Administration (CHA). Report on State Designated Cultural Heritage Natural Monuments & Scenic Sites; CHA: Daejeon, Republic of Korea, 2005; pp. 56–57. (In Korean) [Google Scholar]
- Uchida, K. The fishes of Tyosen. Part 1. Nematognathi, Eventognathi. Bull. Fish. Exp. Sta. Gov. Gener. Tyosen 1939, 6, 1–458. (In Japanese) [Google Scholar]
- Kang, E.J.; Hyun, Y.; Lee, H.H.; Chae, Y.C.; Kim, E.O.; Lee, S.G.; Bang, I.C. Ecology and Early Life History of Endangered Freshwater Fish, Pseudobagrus brevicorpus (Pisces: Bagridae). Korean J. Environ. Biol. 2007, 25, 114–121. [Google Scholar]
- Yang, S.-G.; Kang, E.-J.; Kim, K.-S.; Bang, I.-C. Characteristics on Growth and Sexual Maturation of an Endangered Fish, Stumpy Bullhead (Pseudobagrus brevicorpus), from Korea by Artificial Rearing. Korean J. Environ. Biol. 2009, 27, 369–374. [Google Scholar]
- Kim, K.S. Characterization of Polymorphic Microsatellite Markers and Population Structure Analysis in the Endangered Korean Stumpy Bullhead, Pseudobagrus brevicorpus. Master’s Thesis, Soonchunhyang University, Asan, Republic of Korea, 2009. (In Korean). [Google Scholar]
- Mori, T. Studies on the geographical distribution of fresh-water fishes in Korea. Bull. Biogeogr. Soc. Jpn. 1936, 6, 35–61. (In Japanese) [Google Scholar]
- National Institute of Ecology (NIE). National Survey on the Distribution of Endangered Species; NIE: Seocheon, Republic of Korea, 2023. [Google Scholar]
- Kwak, Y.H. Studies of the Conservation Biology of an Endangered Freshwater Fish, Pseudobagrus brevicorpus. Ph.D. Thesis, Soonchunhyang University, Asan, Republic of Korea, 2019; p. 218. [Google Scholar]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Jepsen, N.; Schreck, C.; Clements, S.; Thorstad, E. A brief discussion on the 2% tag/bodymass rule of thumb. In Aquatic Telemetry: Advances and Applications; Spedicato, M.T., Lembo, G., Marmulla, G., Eds.; FAO/COISPA: Rome, Italy, 2005; pp. 255–259. [Google Scholar]
- Smircich, M.G.; Kelly, J.T. Extending the 2% rule: The effects of heavy internal tags on stress physiology, swimming performance, and growth in brook trout. Anim. Biotelemetry 2014, 2, 16. [Google Scholar] [CrossRef]
- Horký, P.; Slavík, O.; Bartoš, L.; Kolářová, J.; Randák, T. Behavioural Pattern in Cyprinid Fish Below a Weir as Detected by Radio Telemetry. J. Appl. Ichthyol. 2007, 23, 679–683. [Google Scholar] [CrossRef]
- Jellyman, D. A Review of Radio and Acoustic Telemetry Studies of Freshwater Fish in New Zealand. Mar. Freshw. Res. 2009, 60, 321–327. [Google Scholar] [CrossRef]
- Hahn, L. The Application of Radio Telemetry to Fisheries Research in Brazil’s Large Rivers. In Telemetry Techniques: A User Guide for Fisheries Research; Adams, N.S., Beeman, J.W., Eiler, J.H., Eds.; American Fisheries Society: Bethesda, MD, USA, 2012; pp. 237–252. [Google Scholar]
- Yoon, J.D.; Kim, J.H.; Jo, H.B.; Park, J.M.; Jang, M.H.; Kim, J.D.; Park, S.; Joo, G.J. Seasonal habitat utilization and movement patterns of the threatened Brachymystax lenok tsinlingensis in a Korean river. Environ. Biol. Fishes 2015, 98, 225–236. [Google Scholar] [CrossRef]
- Kauhala, K.; Auttila, M. Estimating habitat selection of badgers—A test between different methods. Folia Zool. 2010, 59, 16–25. [Google Scholar] [CrossRef]
- Watanabe, K. Diel activity and reproductive territory of the Japanese bagrid catfish, Pseudobagrus ichikawai. Environ. Biol. Fishes 2008, 81, 77–86. [Google Scholar] [CrossRef]
- Kawanabe, H.; Mizuno, N.; Hosoya, K. (Eds.) Freshwater Fishes of Japan; Yamatokeikokusha Press: Tokyo, Japan, 2001. (In Japanese) [Google Scholar]
- Nikolskii, G.V. Special Ichthyology (Chastnaya Ikhtiologiya); Lengy, J.I.; Krauthamer, Z., Translators; Israel Program for Scientific Translations; Sovetskaya Nauka: Moscow, Russia, 1961; (Original Work Published 1954). [Google Scholar]
- Power, M.E. Depth distributions of armored catfish: Predator-induced resource avoidance? Ecology 1984, 65, 523–528. [Google Scholar] [CrossRef]
- Helfman, G.S. Fish Behaviour by Day, Night and Twilight. In The Behaviour of Teleost Fishes; Pitcher, T.J., Ed.; Springer: Boston, MA, USA, 1986; pp. 366–387. [Google Scholar]
- Biedenbach, M.A. Functional properties of barbel mechanoreceptors in catfish. Brain Res. 1971, 27, 360–364. [Google Scholar] [CrossRef]
- Kwak, Y.H.; Kim, K.R.; Bang, I.C. Diel Activity and Feeding Habitat of Pseudobagrus brevicorpus (Pisces: Bagridae) in the Daegacheon Stream of Nakdonggang River, Korea. Korean J. Ichthyol. 2019, 31, 54–61, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Campos, R.; Rosa, J.; Higuti, J.; Buggenhagen, T.C.; Krawczyk, A.C.D.B. Diel variation of aquatic insect drift in streams of Southern Brazil. Acta Sci. Biol. Sci. 2021, 43, e54931. [Google Scholar] [CrossRef]
- Chevin, L.-M.; Lande, R.; Mace, G.M. Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory. PLoS Biol. 2010, 8, e1000357. [Google Scholar] [CrossRef]
- Chichorro, F.; Juslén, A.; Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 2019, 237, 220–229. [Google Scholar] [CrossRef]
- Poff, N.L.; Zimmerman, J.K.H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- Barletta, M.; Cysneiros, F.J.A.; Lima, A.R.A. Effects of dredging operations on the demersal fish fauna of a South American tropical–subtropical transition estuary: Dredging effects on fish assemblages. J. Fish Biol. 2016, 89, 1–22. [Google Scholar] [CrossRef]
- Wenger, A.S.; Harvey, E.; Wilson, S.; Rawson, C.; Newman, S.J.; Clarke, D.; Saunders, B.J.; Browne, N.; Travers, M.J.; Mcilwain, J.L. A critical analysis of the direct effects of dredging on fish. Fish Fish. 2017, 18, 967–985. [Google Scholar] [CrossRef]
- Beltrão, G.B.M.; Medeiros, E.S.F.; Ramos, R.T.C. Effects of riparian vegetation on the structure of the marginal aquatic habitat and the associated fish assemblage in a tropical Brazilian reservoir. Biota Neotrop. 2009, 9, 37–43. [Google Scholar] [CrossRef]
- Watanabe, K. Pseudobagrus ichikawai. In Circumstances in Endangered Japanese Freshwater Fishes and Their Protection; Nagata, Y., Hosoya, K., Eds.; Midori Shobo: Tokyo, Japan, 1997; pp. 122–132. (In Japanese) [Google Scholar]
- Kobayakawa, M. Pseudobagrus ichikawai. In Threatened Wildlife of Japan—Red Data, Pisces—Blackish and Fresh Water Fishes, 2nd ed.; Ministry of the Environment, Ed.; Japan Wildlife Research Center: Tokyo, Japan, 2003; Volume 4, pp. 110–111. (In Japanese) [Google Scholar]
- Cooke, S.; Paukert, C.; Hogan, Z. Endangered river fish: Factors hindering conservation and restoration. Endanger. Species Res. 2012, 17, 179–191. [Google Scholar] [CrossRef]
Physico-Chemical Factors | Nam River | Daega Stream | Jaho Stream | Gokgang Stream | |
---|---|---|---|---|---|
Dissolved oxygen (mg/L) | 8.35 | 8.47 | 8.22 | 6.83 | |
Conductivity (μS/cm) | 78.6 | 70.6 | 84.2 | 77.1 | |
pH | 8.54 | 8.33 | 8.8 | 9.5 | |
Velocity (mean ± SD, m/s) | 0.11 ± 0.1 | 0.4 ± 0.2 | 0.29 ± 0.2 | 0.24 ± 0.2 | |
Depth (mean ± SD, cm) | 69.8 ± 10.7 | 57.8 ± 12.3 | 61.8 ± 9.2 | 60.6 ± 23.9 | |
Substrate composition (%) | <2 mm | 30 | 10 | 10 | 20 |
2–16 mm | 10 | 10 | 10 | 30 | |
16–64 mm | 10 | 20 | 20 | 30 | |
64–256 mm | 20 | 30 | 30 | 10 | |
>256 mm | 30 | 30 | 30 | 10 |
No. | Frequency | Release Date | Total Length (mm) | Standard Length (mm) | Body Weight (g) | Total Distance (m) | MCP (m2) | KDE95 (m2) | KDE50 (m2) |
---|---|---|---|---|---|---|---|---|---|
1 * | 151.449.20 | 2020.06.12 | 95 | 83 | 9.25 | 227.51 | 2985.61 | 133.19 | 70.11 |
2 | 151.889.30 | 2020.06.12 | 92 | 82 | 9.24 | 53.76 | 69.63 | 88.67 | 46.67 |
3 | 150.319.40 | 2020.06.17 | 84 | 73 | 7.89 | 84.50 | 145.46 | 123.81 | 65.16 |
4 | 149.339.30 | 2020.06.17 | 70 | 60 | 4.18 | 155.89 | 629.07 | 246.34 | 129.65 |
5 | 149.299.20 | 2020.06.17 | 74 | 66 | 5.03 | 102.43 | 109.35 | 141.12 | 74.27 |
6 | 149.399.20 | 2020.06.17 | 65 | 56 | 3.39 | 39.42 | 188.06 | 80.64 | 42.45 |
7 | 149.439.80 | 2020.07.07 | 67 | 59 | 3.27 | 34.91 | 15.66 | 100.92 | 53.12 |
8 | 149.319.10 | 2020.07.07 | 84 | 73 | 7.46 | 78.91 | 28.24 | 102.23 | 53.81 |
9 | 148.339.00 | 2020.07.07 | 84 | 73 | 6.94 | 40.03 | 56.37 | 95.02 | 50.02 |
10 | 150.599.30 | 2020.09.28 | 90 | 77 | 9.18 | 105.91 | 40.33 | 133.97 | 70.52 |
11 | 151.379.30 | 2020.09.28 | 92 | 77 | 9.32 | 184.77 | 174.66 | 218.47 | 114.99 |
12 | 150.099.40 | 2020.09.28 | 82 | 69 | 6.45 | 205.29 | 127.32 | 261.06 | 137.40 |
13 | 149.359.20 | 2020.09.28 | 78 | 65 | 5.47 | 148.41 | 189.22 | 176.22 | 92.74 |
14 | 149.419.10 | 2020.09.28 | 72 | 58 | 4.12 | 44.15 | 27.75 | 120.08 | 63.20 |
Mean ± SD | 107.58 ± 66.01 | 341.91 ± 776.35 | 144.41 ± 58.86 | 76.01 ± 30.98 |
TL | SL | BW | TD | MCP | KDE95 | |
---|---|---|---|---|---|---|
SL | 0.979 * | - | ||||
BW | 0.979 * | 0.959 * | - | |||
TD | 0.477 | 0.464 | 0.534 | - | ||
MCP | 0.126 | 0.126 | 0.226 | 0.635 * | - | |
KDE95 | 0.086 | 0.075 | 0.160 | 0.846 * | 0.42 | - |
KDE50 | 0.086 | 0.075 | 0.160 | 0.846 * | 0.42 | 1.000 * |
No | Movement Distance (m) | Distance from Riparian Line (m) | ||
---|---|---|---|---|
Day | Night | Day | Night | |
2 | 11.59 | 26.93 | 2.24 | 2.72 |
3 | 27.37 | 21.45 | 3.74 | 3.54 |
4-1 | 27.19 | 29.69 | 0.93 | 1.79 |
4-2 | 26.25 | 9.32 | 1.2 | 2.68 |
5-1 | 4.03 | 0 | 1.65 | 2.33 |
5-2 | 11.84 | 17.26 | 1.23 | 1.44 |
6 | 19.77 | 20.79 | 3.23 | 2.96 |
7 | 6.47 | - | 1.94 | - |
8 | 13.9 | 8.06 | 1.81 | 2.18 |
9 | 9.48 | 23.86 | 0.69 | 4.41 |
10 | 6.5 | 3.48 | 2.05 | 0.86 |
11 | 10.35 | 32.24 | 2.53 | 2.17 |
12 | 12.7 | 18.3 | 1.38 | 2.72 |
13 | 14.37 | 37.12 | 1.53 | 2.62 |
14 | 7.64 | 5.22 | 20.86 | 1.25 |
Mean ± SD | 14.0 ± 7.7 | 18.1 ± 11.5 | 1.9 ± 0.8 | 2.4 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, J.; Kim, K.; Kwon, K.; Park, C.; Park, J.; Kang, D.; Kim, J.; Yoon, J. Movements and Home Ranges of an Endangered Freshwater Fish, Pseudobagrus brevicorpus, and the Impact of River Management. Water 2024, 16, 3440. https://doi.org/10.3390/w16233440
Yoo J, Kim K, Kwon K, Park C, Park J, Kang D, Kim J, Yoon J. Movements and Home Ranges of an Endangered Freshwater Fish, Pseudobagrus brevicorpus, and the Impact of River Management. Water. 2024; 16(23):3440. https://doi.org/10.3390/w16233440
Chicago/Turabian StyleYoo, Jeongwoo, Keunsik Kim, Kwanik Kwon, Changdeuk Park, Jongsung Park, Dongwon Kang, Jeonghui Kim, and Juduk Yoon. 2024. "Movements and Home Ranges of an Endangered Freshwater Fish, Pseudobagrus brevicorpus, and the Impact of River Management" Water 16, no. 23: 3440. https://doi.org/10.3390/w16233440
APA StyleYoo, J., Kim, K., Kwon, K., Park, C., Park, J., Kang, D., Kim, J., & Yoon, J. (2024). Movements and Home Ranges of an Endangered Freshwater Fish, Pseudobagrus brevicorpus, and the Impact of River Management. Water, 16(23), 3440. https://doi.org/10.3390/w16233440