The Modeling of a River Impacted with Tailings Mudflows Based on the Differentiation of Spatiotemporal Domains and Assessment of Water–Sediment Interactions Using Machine Learning Approaches
"> Figure 1
<p>Map of Paraopeba River basin, with indication of major tributaries, municipality centers, position in the Brazilian state of Minas Gerais, and location of four water and sediment monitoring stations: PT-52 (“upstream”), PT-13, PT-14 (“anomalous”) and PT19 (“natural”), as well as one streamflow station BCF-RL-08, all used in the statistical assessment and artificial intelligence modeling of water–sediment interactions. The shaded areas describe the general precipitation increase from the mouth to the spring areas of the basin. The datasets of streamflow and water and sediment parameters are provided as <a href="#app1-water-16-00379" class="html-app">Supplementary Materials</a>.</p> "> Figure 2
<p>River model proposed to assess water–sediment interactions in large rivers, based on the initial definition of spatial and temporal domains succeeded by the application of an ensemble of statistical and artificial intelligence algorithms and integrated interpretation of their results.</p> "> Figure 3
<p>Boxplot diagrams of: (<b>A</b>) Fe(dis), (<b>B</b>) Al(dis) and (<b>C</b>) Mn(dis) concentrations in the dry and rainy periods of 2019 to 2021, measured at the “upstream” (PT-52), “anomalous” (PT-13 and PT-14) and “natural” (PT-19) monitoring stations.</p> "> Figure 4
<p>Boxplot diagrams of: (<b>A</b>) Fe(tot), (<b>B</b>) Al(tot) and (<b>C</b>) Mn(tot) concentrations in the dry and rainy periods of 2019 to 2021, measured at the “upstream” (PT-52), “anomalous” (PT-13 and PT-14) and “natural” (PT-19) monitoring stations.</p> "> Figure 5
<p>Boxplot diagrams of ambient conditions and contaminants other than Fe, Al and Mn dissolved and total concentrations in the water of Paraopeba River: (<b>A</b>) pH, (<b>B</b>) temperature, (<b>C</b>) turbidity, (<b>D</b>) total arsenic, (<b>E</b>) dissolved lead, (<b>F</b>) total lead, (<b>G</b>) dissolved phosphorus, (<b>H</b>) total phosphorus, in the dry and rainy periods of 2019 to 2021, measured at the “upstream” (PT-52), “anomalous” (PT-13 and PT-14) and “natural” (PT-19) monitoring stations.</p> "> Figure 5 Cont.
<p>Boxplot diagrams of ambient conditions and contaminants other than Fe, Al and Mn dissolved and total concentrations in the water of Paraopeba River: (<b>A</b>) pH, (<b>B</b>) temperature, (<b>C</b>) turbidity, (<b>D</b>) total arsenic, (<b>E</b>) dissolved lead, (<b>F</b>) total lead, (<b>G</b>) dissolved phosphorus, (<b>H</b>) total phosphorus, in the dry and rainy periods of 2019 to 2021, measured at the “upstream” (PT-52), “anomalous” (PT-13 and PT-14) and “natural” (PT-19) monitoring stations.</p> "> Figure 6
<p>Boxplot diagrams of compartment (E) variables, which are related to the chemical composition of sediments + tailings mixtures: (<b>A</b>) aluminum, (<b>B</b>) arsenic, (<b>C</b>) lead, (<b>D</b>) iron, (<b>E</b>) phosphorus and (<b>F</b>) manganese, in the dry and rainy periods of 2019 to 2021, measured at the “upstream” (PT-52), “anomalous” (PT-13 and PT-14) and “natural” (PT-19) monitoring stations.</p> "> Figure 7
<p>Boxplot diagrams of (F) compartment variables (<a href="#water-16-00379-t001" class="html-table">Table 1</a>), which are related to the granulometric fractions of sediments and tailings: (<b>A</b>) clay, (<b>B</b>) silt, (<b>C</b>) very fine-grained sand, (<b>D</b>) fine-grained sand, (<b>E</b>) sand, (<b>F</b>) coarse-grained sand, (<b>G</b>) very coarse-grained sand. Boxplot diagram of (<b>D</b>) compartment variable: (<b>H</b>) river flow. The dry and rainy periods between 2019 and 2021 were considered, as well as the “upstream” (PT-52), “anomalous” (PT-13 and PT-14) and “natural” (PT-19) monitoring stations.</p> "> Figure 7 Cont.
<p>Boxplot diagrams of (F) compartment variables (<a href="#water-16-00379-t001" class="html-table">Table 1</a>), which are related to the granulometric fractions of sediments and tailings: (<b>A</b>) clay, (<b>B</b>) silt, (<b>C</b>) very fine-grained sand, (<b>D</b>) fine-grained sand, (<b>E</b>) sand, (<b>F</b>) coarse-grained sand, (<b>G</b>) very coarse-grained sand. Boxplot diagram of (<b>D</b>) compartment variable: (<b>H</b>) river flow. The dry and rainy periods between 2019 and 2021 were considered, as well as the “upstream” (PT-52), “anomalous” (PT-13 and PT-14) and “natural” (PT-19) monitoring stations.</p> "> Figure 8
<p>Spearman’s rank-order correlations between all variables listed in <a href="#water-16-00379-t001" class="html-table">Table 1</a>, computed at the “upstream” (panels (<b>A</b>,<b>B</b>)) and “anomalous” PT-13 (<b>C</b>,<b>D</b>) monitoring stations, in the dry and rainy periods.</p> "> Figure 9
<p>Principal component analysis (biplots) of all parameters listed in <a href="#water-16-00379-t001" class="html-table">Table 1</a>: (<b>A</b>) “upstream” station in the dry period; (<b>B</b>) “upstream” station in the rainy period; (<b>C</b>) “anomalous” PT-13 station in the dry period; (<b>D</b>) “anomalous” PT-13 station in the rainy period.</p> "> Figure 9 Cont.
<p>Principal component analysis (biplots) of all parameters listed in <a href="#water-16-00379-t001" class="html-table">Table 1</a>: (<b>A</b>) “upstream” station in the dry period; (<b>B</b>) “upstream” station in the rainy period; (<b>C</b>) “anomalous” PT-13 station in the dry period; (<b>D</b>) “anomalous” PT-13 station in the rainy period.</p> "> Figure 10
<p>Mean values of R<sup>2</sup><sub>Adjust</sub> (Equation (1)) relative to the estimates of Al(dis), Fe(dis), Mn(dis), Al(tot), Fe(tot) and Mn(tot) concentrations, at the “upstream” and “anomalous” PT-13 stations and in dry and rainy periods. The terms MLR, MLP and RF designate the multiple linear regression models with stepwise forward selection of variables, multilayer perceptron neural networks and random forest regressor, respectively.</p> "> Figure 11
<p>Time-series of Fe(dis) and Fe(tot) concentrations, as measured (obs in the legend) or estimated (est in the legend) by the random forest regressor model in the “upstream” (panels (<b>A</b>,<b>B</b>)) and “anomalous” PT-13 (panels (<b>C</b>,<b>D</b>)) stations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. Measurement Protocols
2.3. Model Framework
2.3.1. Experimental Phase
2.3.2. Modelling Phase
3. Results and Discussion
3.1. Experimental Results
3.1.1. Descriptive Statistics
- Aluminum, iron and manganese concentrations in water
- Ambient conditions and concentrations of other elements in the water
- Metal, arsenic and phosphorus concentrations in sediment and tailings
- Particle size distribution in sediments and tailings
3.1.2. Analytical Statistics
- Spearman’s rank-order correlation matrix
- Principal Component Analysis
3.2. Artificial Intelligence Modelling
Artificial Intelligence Methods
- Multiple linear regression with stepwise forward selection of variables
- Artificial neural network multilayer perceptron
- Random forest
3.3. Summary
3.4. Limitations, Implications and Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Al | Aluminum |
Al(dis) | Aluminum dissolved |
Al(sed) | Aluminum sediments |
Al(tot) | Aluminum total |
As(dis) | Arsenic dissolved |
As(sed) | Arsenic sediments |
As(tot) | Arsenic total |
B1 | mine-tailings dam (Córrego do Feijão mine of Vale, S.A) |
BCF-RL-yy | hydrometric station (nº yy) |
DO | Dissolved oxygen |
Eh | Redox potential |
Fe | Iron |
Fe(dis) | Iron dissolved |
Fe(sed) | Iron sediments |
Fe(tot) | Iron total |
m.a.s.l. | metres above sea level |
MLP | Multilayer perceptron (neural network model) |
MLR | Multiple linear regression (artificial intelligence model) |
Mn | Manganese |
Mn(dis) | Manganese dissolved |
Mn(sed) | Manganese sediments |
Mn(tot) | Manganese total |
P(dis) | Phosphorus dissolved |
P(sed) | Phosphorus sediments |
P(tot) | Phosphorus total |
Pb(dis) | Lead dissolved |
Pb(sed) | Lead sediments |
Pb(tot) | Lead total |
PCA | Principal Component Analysis |
PC1 | Chemical Characteristics (PCA result) |
PC2 | Granulometric Characteristics (PCA result) |
PT-xx | Monitoring station (nº xx) |
R2 | Coefficient of determination |
RF | Random Forest (regressor models based on decision trees/machine learning algorithm) |
RMSE | Root Mean Squared Error (accuracy) |
sandC | Coarse-grained sand (0.500–1.000 mm) |
sandF | Fine-grained sand (0.125–0.25 mm) |
sandM | Sand (0.250–0.500 mm) |
sandVC | Very coarse-grained sand (1.00–2.00 mm) |
sandVF | Very fine-grained sand (0.062–0.125 mm) |
T | Temperature |
Tb | Turbidity |
Appendix A. Results of Multiple Linear Regression with Stepwise forward Selection of Variables to Estimate Concentrations of Aluminum, Iron and Manganese
Station/Period | Target | Features/Standardized Coefficients | R2Adjust | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
“Upstream” | Al(dis) | Const 0.186 | Al(tot) 0.15 | Pb(dis) −0.032 | Pb(tot) 0.029 | Fe(dis) 0.071 | Fe(tot) −0.127 | P(dis) 0.031 | Mn(dis) 0.008 | Turb 0.025 | sandM 0.001 | sandVC −0.017 | 0.77 |
“anomalous” PT-13 | Al(dis) | Const 0.206 | Pb(dis) −0.045 | Fe(dis) 0.043 | Mn(dis) 0.041 | Mn(tot) 0.059 | pH −0.033 | T 0.015 | Turb 0.053 | Al(sed) −0.037 | As(sed) 0.019 | P(sed) −0.026 | 0.65 |
“Upstream” Dry | Al(dis) | Const 0.099 | Al(tot) 0.071 | As(tot) −0.003 | Pb(tot) 0.014 | Fe(dis) 0.057 | Fe(tot) −0.091 | Mn(tot) 0.036 | SandVF 0.004 | SandM 0.016 | SandC −0.012 | Q −0.015 | 0.87 |
“Upstream” Rainy | Al(dis) | Const 0.271 | Al(tot) 0.159 | Pb(dis) −0.035 | Pb(tot) 0.026 | Fe(dis) 0.05 | Fe(tot) −0.011 | P(dis) 0.052 | P(tot) −0.024 | Mn(dis) 0.014 | T −0.026 | SandVC −0.011 | 0.64 |
“anomalous” PT-13 Dry | Al(dis) | Const 0.095 | Al(tot) 0.048 | Pb(tot) −0.025 | Mn(tot) −0.016 | Turb 0.011 | Pb(sed) −0.003 | P(sed) −0.028 | Mn(sed) 0.022 | SandVF −0.013 | SandC −0.009 | Qmed 0.006 | 0.84 |
“anomalous” PT-13 Rainy | Al(dis) | Const 0.321 | Al(tot) 0.031 | Pb(dis) −0.019 | Fe(dis) 0.163 | pH −0.02 | T −0.042 | Al(sed) −0.021 | Pb(sed) −0.041 | Fe(sed) 0.023 | SandC −0.042 | Q −0.064 | 0.73 |
“Upstream” | Al(tot) | Const 3.011 | Al(dis) 0.458 | As(tot) 0.148 | Pb(dis) 0.276 | Pb(tot) −0.379 | Fe(dis) −0.579 | Fe(tot) 3.895 | P(dis) 0.21 | Mn(tot) −0.428 | P(sed) −0.378 | Mn(sed) 0.335 | 0.97 |
“anomalous” PT-13 | Al(tot) | Const 3.164 | As(tot) 1.028 | Fe(tot) 2.675 | P(tot) 0.386 | Mn(dis) −0.968 | Mn(tot) −1.801 | pH −0.245 | Turb 2.138 | Al(sed) −0.209 | P(sed) −0.154 | SandF −0.198 | 0.90 |
“Upstream” Dry | Al(tot) | Const 0.558 | Al(dis) 0.127 | As(tot) −0.041 | Pb(tot) 0.091 | Fe(dis) −0.214 | Fe(tot) 0.379 | P(dis) 0.030 | pH −0.041 | Turb 0.151 | SandF 0.033 | Q −0.004 | 0.93 |
“Upstream” Rainy | Al(tot) | Const 5.402 | Al(dis) 0.53 | As(tot) 0.228 | Pb(dis) 0.347 | Pb(tot) −0.391 | Fe(dis) −0.465 | Fe(tot) 3.574 | P(dis) 0.34 | Mn(tot) −0.42 | T 0.198 | Turb 0.291 | 0.95 |
“anomalous” PT-13 Dry | Al(tot) | Const 0.569 | Al(dis) 0.198 | As(tot) 0.064 | Pb(tot) 0.077 | Fe(dis) 0.265 | Fe(tot) 0.289 | P(tot) 0.105 | Mn(tot) 0.043 | Turb −0.198 | P(sed) 0.112 | Mn(sed) −0.072 | 0.92 |
“anomalous” PT-13 Rainy | Al(tot) | Const 5.861 | As(tot) 1.388 | Fe(tot) 3.643 | P(dis) 0.621 | Mn(dis) −1.142 | Mn(tot) −2.736 | pH −0.341 | Turb 2.008 | Al(sed) −0.526 | Mn(sed) −0.821 | Silt 0.711 | 0.87 |
Station/Period | Target | Features/Standardized Coefficients | R2Adjust | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
“Upstream” | Fe(dis) | Const 0.437 | Al(dis) 0.084 | Al(tot) −0.216 | Pb(dis) 0.034 | Fe(tot) 0.241 | P(dis) 0.088 | pH −0.015 | T 0.022 | Turb −0.069 | Mn(sed) −0.014 | SandM 0.031 | 0.80 |
“anomalous” PT-13 | Fe(dis) | Const 0.692 | Al(dis) 0.196 | Fe(tot) −0.375 | P(dis) −0.111 | Mn(dis) 0.368 | Turb 0.395 | As(sed) −0.103 | Pb(sed) −0.136 | P(sed) 0.243 | Silt 0.086 | SandVF −0.102 | 0.56 |
“Upstream” Dry | Fe(dis) | Const 0.336 | Al(dis) 0.061 | Al(tot) −0.109 | Pb(dis) 0.032 | Pd(tot) −0.015 | Fe(tot) 0.162 | P(dis) 0.010 | Mn(tot) −0.049 | pH −0.007 | SandF 0.013 | Q 0.063 | 0.93 |
“Upstream” Rainy | Fe(dis) | Const 0.536 | Al(dis) 0.05 | Al(tot) −0.105 | As(tot) 0.035 | Pb(dis) 0.045 | Fe(tot) 0.078 | P(dis) 0.097 | Turb −0.063 | As(sed) 0.055 | Mn(sed) −0.089 | As(sed) 0.026 | 0.78 |
“anomalous” PT-13 Dry | Fe(dis) | Const 0.586 | Al(dis) −0.004 | Al(tot) 0.331 | As(tot) 0.192 | Fe(tot) −0.477 | P(dis) −0.243 | Mn(tot) 0.155 | Turb 0.283 | Fe(sed) −0.111 | Mn(sed) 0.087 | Q 0.090 | 0.93 |
“anomalous” PT-13 Rainy | Fe(dis) | Const 0.803 | Al(dis) 0.212 | Al(tot) −0.117 | Pd(tot) −0.082 | Fe(tot) 0.264 | Mn(dis) 0.409 | Mn(tot) −0.144 | Pb(sed) 0.056 | Mn(sed) −0.036 | SandF −0.026 | Q 0.11 | 0.88 |
“Upstream” | Fe(tot) | Const 4.078 | Al(dis) −0.311 | Al(tot) 2.605 | Pb(dis) −0.086 | Pd(tot) 0.486 | Fe(dis) 0.449 | P(dis) −0.177 | Mn(dis) −0.071 | Mn(tot) 0.721 | T 0.074 | Turb 0.283 | 0.98 |
“anomalous” PT-13 | Fe(tot) | Const 4.986 | Al(tot) 1.881 | As(tot) 0.494 | Fe(dis) −0.571 | P(tot) −0.601 | Mn(tot) 4.846 | pH −0.215 | Turb 1.442 | Pb(sed) −0.255 | SandVF −0.766 | SandF 0.334 | 0.96 |
“Upstream” Dry | Fe(tot) | Const 1.315 | Al(dis) −0.244 | Al(tot) 0.326 | As(tot) 0.043 | Fe(dis) 0.327 | P(tot) 0.028 | Mn(dis) −0.046 | Mn(tot) 0.376 | Turb 0.204 | As(sed) 0.023 | Q −0.19 | 0.98 |
“Upstream” Rainy | Fe(tot) | Const 6.771 | Al(dis) −0.266 | Al(tot) 2.684 | Pd(tot) 0.439 | Fe(dis) 0.316 | P(tot) −0.121 | Mn(tot) 0.795 | Turb 0.328 | P(sed) 0.484 | Mn(sed) −0.781 | SandC 0.131 | 0.97 |
“anomalous” PT-13 Dry | Fe(tot) | Const 1.28 | Al(tot) 0.717 | As(tot) −0.174 | Fe(dis) −1.085 | P(dis) −0.542 | Mn(dis) −0.114 | Mn(tot) 0.472 | Turb 0.673 | Al(sed) 0.058 | As(sed)g −0.135 | Q 0.156 | 0.91 |
“anomalous” PT-13 Rainy | Fe(tot) | Const 8.838 | Al(tot) 2.135 | As(tot) 0.485 | Fe(dis) 0.908 | P(dis) −0.676 | Mn(dis) −0.763 | Mn(tot) 6.168 | Turb 1.437 | As(sed)g 0.327 | SandVF −1.573 | SandF 0.984 | 0.96 |
Station/Period | Target | Features/Standardized Coefficients | R2Adjust | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
“Upstream” | Mn(dis) | Const 0.022 | Al(dis) 0.002 | Fe(dis) −0.002 | P(tot) 0.005 | Al(sed) −0.002 | Pb(sed) 0.002 | Fe(sed) −0.003 | As(sed) −0.003 | SandF −0.002 | SandC −0.004 | SandVF 0.001 | 0.37 |
“anomalous” PT-13 | Mn(dis) | Const 0.068 | Al(dis) 0.006 | Al(tot) −0.041 | As(tot) 0.026 | Fe(dis) 0.021 | P(tot) −0.020 | Mn(tot) 0.127 | As(sed) 0.008 | Silt −0.009 | SandVF 0.011 | Q −0.01 | 0.87 |
“Upstream” Dry | Mn(dis) | Const 0.017 | Pb(dis) 0.004 | Fe(dis) −0.003 | Fe(tot) −0.006 | P(tot) 0.002 | Mn(tot) 0.008 | pH −0.002 | As(sed) −0.002 | Silt 0.005 | Sand_m 0.005 | Q −0.003 | 0.61 |
“Upstream” Rainy | Mn(dis) | Const 0.025 | Al(dis) 0.003 | As(tot) 0.003 | Pd(tot) −0.002 | P(tot) 0.006 | T 0.001 | Fe(sed) −0.005 | As(sed) −0.004 | SandVF 0.001 | SandC −0.005 | SandVF 0.003 | 0.31 |
“anomalous” PT-13 Dry | Mn(dis) | Const 0.042 | As(tot) 0.015 | Pb(dis) 0.016 | Pd(tot) −0.020 | Mn(tot) 0.003 | T 0.005 | Pb(sed) 0.008 | P(sed) −0.009 | Mn(sed) 0.010 | Silt 0.003 | SandVF 0.002 | 0.72 |
“anomalous” PT-13 Rainy | Mn(dis) | Const 0.095 | Al(dis) −0.034 | As(tot) 0.021 | Pd(tot) 0.023 | Fe(dis) 0.111 | Fe(tot) −0.058 | P(dis) −0.023 | Mn(tot) 0.139 | Pb(sed) −0.014 | SandVF 0.007 | Q −0.029 | 0.91 |
“Upstream” | Mn(tot) | Const 0.383 | Al(dis) 0.029 | Al(tot) −0.161 | As(tot) 0.069 | Pb(dis) −0.030 | Pd(tot) −0.055 | Fe(tot) 0.437 | P(dis) 0.023 | P(tot) 0.061 | Mn(dis) 0.016 | As(sed) 0.014 | 0.89 |
“anomalous” PT-13 | Mn(tot) | Const 0.818 | Al(tot) −0.291 | As(tot) −0.127 | Pb(dis) 0.068 | Fe(dis) 0.067 | Fe(tot) 1.161 | P(tot) 0.228 | Mn(dis) 0.448 | pH 0.071 | SandVF 0.164 | SandF −0.129 | 0.96 |
“Upstream” Dry | Mn(tot) | Const 0.121 | Al(dis) 0.026 | Pd(tot) −0.013 | Fe(dis) −0.028 | Fe(tot) 0.084 | P(tot) −0.007 | Mn(dis) 0.013 | pH 0.003 | Turb −0.034 | SandVC 0.005 | Q 0.034 | 0.94 |
“Upstream” Rainy | Mn(tot) | Const 0.637 | Al(tot) −0.219 | As(tot) 0.084 | Pb(dis) −0.040 | Pd(tot) −0.052 | Fe(tot) 0.473 | P(dis) 0.053 | P(tot) 0.059 | As(sed) 0.039 | P(sed) −0.123 | Mn(sed) 0.096 | 0.80 |
“anomalous” PT-13 Dry | Mn(tot) | Const 0.213 | Al(dis) −0.023 | Al(tot) 0.014 | Fe(dis) 0.057 | Fe(tot) 0.087 | P(dis) 0.076 | Mn(dis) 0.031 | Turb 0.020 | Pb(sed) −0.015 | Fe(sed) 0.013 | Q −0.017 | 0.87 |
“anomalous” PT-13 Rainy | Mn(tot) | Const 1.446 | Al(tot) −0.395 | As(tot) −0.148 | Pb(dis) 0.140 | Fe(tot) 1.516 | P(dis) 0.222 | Mn(dis) 0.549 | As(sed)g −0.089 | SandVF 0.321 | SandF −0.289 | SandVC −0.089 | 0.96 |
References
- Garneau, C.; Sauvage, S.; Sánchez-Pérez, J.-M.; Lofts, S.; Brito, D.; Neves, R.; Probst, A. Modelling Trace Metal Transfer in Large Rivers under Dynamic Hydrology: A Coupled Hydrodynamic and Chemical Equilibrium Model. Environ. Model. Softw. 2017, 89, 77–96. [Google Scholar] [CrossRef]
- De Andrade, L.C.; Andrade, R.D.R.; Camargo, F.A.O. The Historical Influence of Tributaries on the Water and Sediment of Jacuí’s Delta, Southern Brazil. Rev. Ambiente Água 2018, 13, 1. [Google Scholar] [CrossRef]
- Axtmann, E.V.; Cain, D.J.; Luoma, S.N. Effect of Tributary Inflows on the Distribution of Trace Metals in Fine-Grained Bed Sediments and Benthic Insects of the Clark Fork River, Montana. Environ. Sci. Technol. 1997, 31, 750–758. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, F.; Zhang, X.; Lin, B.; Yang, Z.; Yuan, B.; Falconer, R.A. Severely Declining Suspended Sediment Concentration in the Heavily Dammed Changjiang Fluvial System. Water Resour. Res. 2021, 57, e2021WR030370. [Google Scholar] [CrossRef]
- Lu, H.; Moran, C.J.; Prosser, I.P. Modelling Sediment Delivery Ratio over the Murray Darling Basin. Environ. Model. Softw. 2006, 21, 1297–1308. [Google Scholar] [CrossRef]
- Lu, H.; Moran, C.J.; Sivapalan, M. A Theoretical Exploration of Catchment-Scale Sediment Delivery. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Huang, G.-Z.; Hsu, T.-C.; Yu, C.-K.; Huang, J.-C.; Lin, T.-C. Dilution and Precipitation Dominated Regulation of Stream Water Chemistry of a Volcanic Watershed. J. Hydrol. 2020, 583, 124564. [Google Scholar] [CrossRef]
- Valipour, R.; Boegman, L.; Bouffard, D.; Rao, Y.R. Sediment Resuspension Mechanisms and Their Contributions to High-Turbidity Events in a Large Lake. Limnol. Oceanogr. 2017, 62, 1045–1065. [Google Scholar] [CrossRef]
- Bianucci, L.; Balaguru, K.; Smith, R.W.; Leung, L.R.; Moriarty, J.M. Contribution of Hurricane-Induced Sediment Resuspension to Coastal Oxygen Dynamics. Sci. Rep. 2018, 8, 15740. [Google Scholar] [CrossRef]
- Marques, L.; Reis, D.; Nascimento, L.; Oliveira, E.; Santiago, A.; Roeser, H. Mobility of Metals in River Sediments from a Watershed in the Iron Quadrangle, Brazil. Geochim. Bras. 2019, 33, 273–285. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, D.; Xu, Z.; Yuan, S.; Li, Y.; Wang, L. Effect of Overlying Water PH, Dissolved Oxygen and Temperature on Heavy Metal Release from River Sediments under Laboratory Conditions. Arch. Environ. Prot. 2017, 43, 28–36. [Google Scholar] [CrossRef]
- Lin, Y.; Larssen, T.; Vogt, R.D.; Feng, X.; Zhang, H. Modelling Transport and Transformation of Mercury Fractions in Heavily Contaminated Mountain Streams by Coupling a GIS-Based Hydrological Model with a Mercury Chemistry Model. Sci. Total Environ. 2011, 409, 4596–4605. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, K.T.O.; Alcântara, E.; de Souza Filho, C.R. Possible Contamination of the Abrolhos Reefs by Fundao Dam Tailings, Brazil—New Constraints Based on Satellite Data. Sci. Total Environ. 2020, 733, 138101. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, R.; Zhang, Z.; Cai, Y.; Zhang, L. A Bayesian Network-Based Risk Dynamic Simulation Model for Accidental Water Pollution Discharge of Mine Tailings Ponds at Watershed-Scale. J. Environ. Manag. 2019, 246, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.-M.; Muñoz-Carpena, R. Simplified Modeling of Phosphorus Removal by Vegetative Filter Strips to Control Runoff Pollution from Phosphate Mining Areas. J. Hydrol. 2009, 378, 343–354. [Google Scholar] [CrossRef]
- Föeger, L.B.; Buarque, D.C.; Pontes, P.R.M.; de Oliveira Fagundes, H.; Fan, F.M. Large-Scale Sediment Modeling with Inertial Flow Routing: Assessment of Madeira River Basin. Environ. Model. Softw. 2022, 149, 105332. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, T.; Tu, T.; Tu, X.; Chen, X. PairwiseIHA: A Python Toolkit to Detect Flow Regime Alterations for Headwater Rivers. Environ. Model. Softw. 2022, 154, 105427. [Google Scholar] [CrossRef]
- Gebremariam, S.Y.; Martin, J.F.; DeMarchi, C.; Bosch, N.S.; Confesor, R.; Ludsin, S.A. A Comprehensive Approach to Evaluating Watershed Models for Predicting River Flow Regimes Critical to Downstream Ecosystem Services. Environ. Model. Softw. 2014, 61, 121–134. [Google Scholar] [CrossRef]
- Sauterleute, J.F.; Charmasson, J. A Computational Tool for the Characterisation of Rapid Fluctuations in Flow and Stage in Rivers Caused by Hydropeaking. Environ. Model. Softw. 2014, 55, 266–278. [Google Scholar] [CrossRef]
- Kim, D.-W.; Chung, E.G.; Kim, K.; Kim, Y. Impact of Riverbed Topography on Hydrology in Small Watersheds Using Soil and Water Assessment Tool. Environ. Model. Softw. 2022, 152, 105383. [Google Scholar] [CrossRef]
- Hales, R.C.; Nelson, E.J.; Souffront, M.; Gutierrez, A.L.; Prudhomme, C.; Kopp, S.; Ames, D.P.; Williams, G.P.; Jones, N.L. Advancing Global Hydrologic Modeling with the <scp>GEOGloWS ECMWF</Scp> Streamflow Service. J. Flood Risk Manag. 2022, e12859. [Google Scholar] [CrossRef]
- Khattar, R.; Hales, R.; Ames, D.P.; Nelson, E.J.; Jones, N.L.; Williams, G. Tethys App Store: Simplifying Deployment of Web Applications for the International GEOGloWS Initiative. Environ. Model. Softw. 2021, 146, 105227. [Google Scholar] [CrossRef]
- Hales, R.C.; Nelson, E.J.; Williams, G.P.; Jones, N.; Ames, D.P.; Jones, J.E. The Grids Python Tool for Querying Spatiotemporal Multidimensional Water Data. Water 2021, 13, 2066. [Google Scholar] [CrossRef]
- Bustamante, G.R.; Nelson, E.J.; Ames, D.P.; Williams, G.P.; Jones, N.L.; Boldrini, E.; Chernov, I.; Sanchez Lozano, J.L. Water Data Explorer: An Open-Source Web Application and Python Library for Water Resources Data Discovery. Water 2021, 13, 1850. [Google Scholar] [CrossRef]
- Barton, C.M.; Ames, D.; Chen, M.; Frank, K.; Jagers, H.R.A.; Lee, A.; Reis, S.; Swantek, L. Making Modeling and Software FAIR. Environ. Model. Softw. 2022, 156, 105496. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Zhan, C.; Xuan, Y.; Ye, M.; Xu, C. Global Sensitivity Analysis in Hydrological Modeling: Review of Concepts, Methods, Theoretical Framework, and Applications. J. Hydrol. 2015, 523, 739–757. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C. Bayesian Uncertainty Analysis in Distributed Hydrologic Modeling: A Case Study in the Thur River Basin (Switzerland). Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Althoff, D.; Rodrigues, L.N. Goodness-of-Fit Criteria for Hydrological Models: Model Calibration and Performance Assessment. J. Hydrol. 2021, 600, 126674. [Google Scholar] [CrossRef]
- Santos, C.; Almeida, C.; Ramos, T.; Rocha, F.; Oliveira, R.; Neves, R. Using a Hierarchical Approach to Calibrate SWAT and Predict the Semi-Arid Hydrologic Regime of Northeastern Brazil. Water 2018, 10, 1137. [Google Scholar] [CrossRef]
- Hales, R.C.; Sowby, R.B.; Williams, G.P.; Nelson, E.J.; Ames, D.P.; Dundas, J.B.; Ogden, J. SABER: A Model-Agnostic Postprocessor for Bias Correcting Discharge from Large Hydrologic Models. Hydrology 2022, 9, 113. [Google Scholar] [CrossRef]
- Oliveira, A.R.; Ramos, T.B.; Neves, R. Streamflow Estimation in a Mediterranean Watershed Using Neural Network Models: A Detailed Description of the Implementation and Optimization. Water 2023, 15, 947. [Google Scholar] [CrossRef]
- Tao, H.; Al-Khafaji, Z.S.; Qi, C.; Zounemat-Kermani, M.; Kisi, O.; Tiyasha, T.; Chau, K.-W.; Nourani, V.; Melesse, A.M.; Elhakeem, M.; et al. Artificial Intelligence Models for Suspended River Sediment Prediction: State-of-the Art, Modeling Framework Appraisal, and Proposed Future Research Directions. Eng. Appl. Comput. Fluid Mech. 2021, 15, 1585–1612. [Google Scholar] [CrossRef]
- Ezzaouini, M.A.; Mahé, G.; Kacimi, I.; El Bilali, A.; Zerouali, A.; Nafii, A. Predicting Daily Suspended Sediment Load Using Machine Learning and NARX Hydro-Climatic Inputs in Semi-Arid Environment. Water 2022, 14, 862. [Google Scholar] [CrossRef]
- Kim, H.D.; Aoki, S. Artificial Intelligence Application on Sediment Transport. J. Mar. Sci. Eng. 2021, 9, 600. [Google Scholar] [CrossRef]
- Nourani, V.; Gokcekus, H.; Gelete, G. Estimation of Suspended Sediment Load Using Artificial Intelligence-Based Ensemble Model. Complexity 2021, 2021, 6633760. [Google Scholar] [CrossRef]
- Essam, Y.; Huang, Y.F.; Birima, A.H.; Ahmed, A.N.; El-Shafie, A. Predicting Suspended Sediment Load in Peninsular Malaysia Using Support Vector Machine and Deep Learning Algorithms. Sci. Rep. 2022, 12, 302. [Google Scholar] [CrossRef] [PubMed]
- Didkovskyi, O.; Ivanov, V.; Radice, A.; Papini, M.; Longoni, L.; Menafoglio, A. A Comparison Between Machine Learning and Functional Geostatistics Approaches for Data-Driven Analyses of Sediment Transport in a Pre-Alpine Stream. Math. Geosci. 2022, 54, 467–506. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; do Valle Junior, R.F.; de Melo Silva, M.M.A.P.; Pissarra, T.C.T.; Carvalho de Melo, M.; Valera, C.A.; Sanches Fernandes, L.F. Prognosis of Metal Concentrations in Sediments and Water of Paraopeba River Following the Collapse of B1 Tailings Dam in Brumadinho (Minas Gerais, Brazil). Sci. Total Environ. 2022, 809, 151157. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; de Oliveira, M.D.; Oliveira, M.S.; Libânio, M.; do Valle Junior, R.F.; de Melo Silva, M.M.A.P.; Pissarra, T.C.T.; de Melo, M.C.; Valera, C.A.; Fernandes, L.F.S. Water Security Threats and Challenges Following the Rupture of Large Tailings Dams. Sci. Total Environ. 2022, 834, 155285. [Google Scholar] [CrossRef]
- Teramoto, E.H.; Gemeiner, H.; Zanatta, M.B.T.; Menegário, A.A.; Chang, H.K. Metal Speciation of the Paraopeba River after the Brumadinho Dam Failure. Sci. Total Environ. 2021, 757, 143917. [Google Scholar] [CrossRef]
- Vale Plano de Monitoriamento Emergencial: Qualidade Das Águas Superficiais e Sedimento; Versão 11G; Projeto Brumadinho UFMG: Belo Horizonte, Brazil, 2021; pp. 1–42.
- Vale Plano de Monitoramento Emergencial: Qualidade Das Águas Superficiais e SedimentoQualidade Das Águas Superficiais e Sedimento; Versão 11F; Projeto Brumadinho UFMG: Belo Horizonte, Brazil, 2020; pp. 1–42.
- Arcadis Caracterização Geoquímica Dos Rejeitos Em Profundidade e Solo Sotoposto; ARCADIS: Brumadinho, MG, USA, 2021; p. 97.
- SEI Acordo Judicial Para Reparação Integral Relativa Ao Rompimento Das Barragens B-I, B-IV E B-IVA/Córrego Do Feijão; Ministério Público de Minas Gerais: Belo Horizonte, Brasil, 2021; p. 139.
- Arcadis Caracteriçao Geológica Dos Testemunhos Coletados No Rio Paraopeba—MG; ARCADIS: Brumadinho, MG, USA, 2020.
- Zohuri, B.; Mossavar-Rahmani, F.; Behgounia, F. Artificial Intelligence, Machine Learning, and Deep Learning Use Cases. In Knowledge is Power in Four Dimensions: Models to Forecast Future Paradigm; Elsevier: Amsterdam, The Netherlands, 2022; pp. 889–947. [Google Scholar]
- Pacheco, F.A.L.; Valle Junior, R.F.; Melo Silva, M.M.A.P.; Tarlé Pissarra, T.C.; Rolim, G.S.; Melo, M.C.; Valera, C.A.; Moura, J.P.; Sanches Fernandes, L.F. Geochemistry and contamination of sediments and water in rivers affected by the rupture of tailings dams (Brumadinho, Brazil). Appl. Geochem. 2023, 152, 105644. [Google Scholar] [CrossRef]
- Gujarati, D.N.; Porter, D.C. Econometria Básica, 5th ed.; AMGH: Porto Alegre, Brazil, 2011; p. 924. [Google Scholar]
- Pudil, P.; Novovičová, J.; Kittler, J. Floating Search Methods in Feature Selection. Pattern Recognit. Lett. 1994, 15, 1119–1125. [Google Scholar] [CrossRef]
- Raschka, S. MLxtend: Providing Machine Learning and Data Science Utilities and Extensions to Python’s Scientific Computing Stack. J. Open Source Softw. 2018, 3, 638. [Google Scholar] [CrossRef]
- Khullar, S.; Singh, N. Machine Learning Techniques in River Water Quality Modelling: A Research Travelogue. Water Supply 2021, 21, 1–13. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Piryonesi, S.M.; El-Diraby, T.E. Examining the Relationship between Two Road Performance Indicators: Pavement Condition Index and International Roughness Index. Transp. Geotech. 2021, 26, 100441. [Google Scholar] [CrossRef]
- Cornell, J.A. Factors That Influence the Value of the Coefficient of Determination in Simple Linear and Nonlinear Regression Models. Phytopathology 1987, 77, 63. [Google Scholar] [CrossRef]
- Kouzehgar, K.; Eslamian, S. Application of Experimental Data and Soft Computing Techniques in Determining the Outflow and Breach Characteristics in Embankments and Landslide Dams. In Handbook of Hydroinformatics; Elsevier: Amsterdam, The Netherlands, 2023; pp. 11–31. [Google Scholar]
- Ogendi, G.M.; Hannigan, R.E.; Farris, J.L. Chapter 12 Association of Dissolved Organic Carbon with Stream Discharge and Dissolved Metals Concentrations in Black Shale-Draining Streams. In Developments in Environmental Science; Elsevier: Amsterdam, The Netherlands, 2007; pp. 247–272. [Google Scholar]
- Chen, L.; Zhang, H.; Xie, Z.; Ding, M.; Devlin, A.T.; Jiang, Y.; Xie, K. The Temporal Response of Dissolved Heavy Metals to Landscape Indices in the Le’an River, China. Environ. Res. 2022, 210, 112941. [Google Scholar] [CrossRef]
- Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K. Impacts and Policy Implications of Metals Effluent Discharge into Rivers within Industrial Zones: A Sub-Saharan Perspective from Ethiopia. Environ. Manage. 2018, 61, 700–715. [Google Scholar] [CrossRef]
- Smith, K.S.; Huyck, H.L.O. An Overview of the Abundance, Relative Mobility, Bioavailability, and Human Toxicity of Metals. In The Environmental Geochemistry of Mineral Deposits; Society of Economic Geologists: Littleton, Colorado, 1997; pp. 29–70. [Google Scholar]
- Javed, M.B.; Cuss, C.W.; Shotyk, W. Dissolved versus Particulate Forms of Trace Elements in the Athabasca River, Upstream and Downstream of Bitumen Mines and Upgraders. Appl. Geochem. 2020, 122, 104706. [Google Scholar] [CrossRef]
- Osawa, K.; Nonaka, Y.; Nishimura, T.; Tanoi, K.; Matsui, H.; Mizogichi, M.; Tatsuno, T. Quantification of Dissolved and Particulate Radiocesium Fluxes in Two Rivers Draining the Main Radioactive Pollution Plume in Fukushima, Japan (2013–2016). Anthropocene 2018, 22, 40–50. [Google Scholar] [CrossRef]
- Wen, Y.; Yang, Z.; Xia, X. Dissolved and Particulate Zinc and Nickel in the Yangtze River (China): Distribution, Sources and Fluxes. Appl. Geochemistry 2013, 31, 199–208. [Google Scholar] [CrossRef]
- Cánovas, C.R.; Riera, J.; Carrero, S.; Olías, M. Dissolved and Particulate Metal Fluxes in an AMD-Affected Stream under Different Hydrological Conditions: The Odiel River (SW Spain). CATENA 2018, 165, 414–424. [Google Scholar] [CrossRef]
- Beltaos, S.; Burrell, B.C. Characteristics of Suspended Sediment and Metal Transport during Ice Breakup, Saint John River, Canada. Cold Reg. Sci. Technol. 2016, 123, 164–176. [Google Scholar] [CrossRef]
- Casserly, C.M.; Turner, J.N.; O’ Sullivan, J.J.; Bruen, M.; Magee, D.; Coiléir, S.O.; Kelly-Quinn, M. Coarse Sediment Dynamics and Low-Head Dams: Monitoring Instantaneous Bedload Transport Using a Stationary RFID Antenna. J. Environ. Manage. 2021, 300, 113671. [Google Scholar] [CrossRef] [PubMed]
- Sziło, J.; Bialik, R. Grain Size Distribution of Bedload Transport in a Glaciated Catchment (Baranowski Glacier, King George Island, Western Antarctica). Water 2018, 10, 360. [Google Scholar] [CrossRef]
- Paphitis, D. Sediment Movement under Unidirectional Flows: An Assessment of Empirical Threshold Curves. Coast. Eng. 2001, 43, 227–245. [Google Scholar] [CrossRef]
- Miller, M.C.; McCave, I.N.; Komar, P.D. Threshold of Sediment Motion under Unidirectional Currents. Sedimentology 1977, 24, 507–527. [Google Scholar] [CrossRef]
- Lichtman, I.D.; Baas, J.H.; Amoudry, L.O.; Thorne, P.D.; Malarkey, J.; Hope, J.A.; Peakall, J.; Paterson, D.M.; Bass, S.J.; Cooke, R.D.; et al. Bedform Migration in a Mixed Sand and Cohesive Clay Intertidal Environment and Implications for Bed Material Transport Predictions. Geomorphology 2018, 315, 17–32. [Google Scholar] [CrossRef]
- Droppo, I.G. Rethinking What Constitutes Suspended Sediment. Hydrol. Process. 2001, 15, 1551–1564. [Google Scholar] [CrossRef]
- Salgado Terêncio, D.P.; Leal Pacheco, F.A.; Farias do Valle Junior, R.; Abreu Pires de Melo Silva, M.M.; Tarlé Pissarra, T.C.; Carvalho de Melo, M.; Valera, C.A.; Sanches Fernandes, L.F. The Igarapé Weir Decelerated Transport of Contaminated Sediment in the Paraopeba River after the Failure of the B1 Tailings Dam (Brumadinho). Int. J. Sediment Res. 2023, 38, 673–697. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-Load Transport. J. Hydraul. Eng. 2007, 133, 649–667. [Google Scholar] [CrossRef]
- Xue, S.; Jian, H.; Yang, F.; Liu, Q.; Yao, Q. Impact of Water-Sediment Regulation on the Concentration and Transport of Dissolved Heavy Metals in the Middle and Lower Reaches of the Yellow River. Sci. Total Environ. 2022, 806, 150535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, K.; Yi, Q.; Zhang, T.; Shi, W.; Zhou, X. Transport and Partitioning of Metals in River Networks of a Plain Area with Sedimentary Resuspension and Implications for Downstream Lakes. Environ. Pollut. 2022, 294, 118668. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.N.; Upadhyaya, N.P. Metal Transport Phases in Rivers around Jameshedpur. Toxicol. Environ. Chem. 1985, 10, 285–298. [Google Scholar] [CrossRef]
- Nasrabadi, M.; Omid, M.H.; Mazdeh, A.M. Experimental Study of Flow Turbulence Effect on Cadmium Desorption Kinetics from Riverbed Sands. Environ. Process. 2022, 9, 10. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Spencer, K.; Kloas, W.; Toffolon, M.; Zarfl, C. Metal Fate and Effects in Estuaries: A Review and Conceptual Model for Better Understanding of Toxicity. Sci. Total Environ. 2016, 541, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.K.; Ram, D. Adsorption of Metal Ions on Bed Sediments. Hydrol. Sci. J. 1997, 42, 713–723. [Google Scholar] [CrossRef]
- Huang, B.; Yuan, Z.; Li, D.; Zheng, M.; Nie, X.; Liao, Y. Effects of Soil Particle Size on the Adsorption, Distribution, and Migration Behaviors of Heavy Metal(Loid)s in Soil: A Review. Environ. Sci. Process. Impacts 2020, 22, 1596–1615. [Google Scholar] [CrossRef]
- Rico, M.; Benito, G.; Salgueiro, A.R.; Díez-Herrero, A.; Pereira, H.G. Reported Tailings Dam Failures. J. Hazard. Mater. 2008, 152, 846–852. [Google Scholar] [CrossRef]
- Piciullo, L.; Storrøsten, E.B.; Liu, Z.; Nadim, F.; Lacasse, S. A New Look at the Statistics of Tailings Dam Failures. Eng. Geol. 2022, 303, 106657. [Google Scholar] [CrossRef]
- Owen, J.R.; Kemp, D.; Lèbre, É.; Svobodova, K.; Pérez Murillo, G. Catastrophic Tailings Dam Failures and Disaster Risk Disclosure. Int. J. Disaster Risk Reduct. 2020, 42, 101361. [Google Scholar] [CrossRef]
- Halabi, A.L.M.; Siacara, A.T.; Sakano, V.K.; Pileggi, R.G.; Futai, M.M. Tailings Dam Failures: A Historical Analysis of the Risk. J. Fail. Anal. Prev. 2022, 22, 464–477. [Google Scholar] [CrossRef]
- Gonzalez, R.S.; Rossi, R.A.S.; Vieira, L.G.M. Economic and financial consequences of process accidents in Brazil: Multiple case studies. Eng. Fail. Anal. 2022, 132, 105934. [Google Scholar] [CrossRef]
- Valenti, V.E.; Garner, D.M. Cardiovascular risks in subjects exposed to the Brumadinho dam collapse, Minas Gerais, Brazil. Clinics 2019, 74, e1301. [Google Scholar] [CrossRef] [PubMed]
- Rotta, L.H.S.; Alcântara, E.; Park, E.; Negri, R.G.; Lin, Y.N.; Bernardo, N.; Mendes, T.S.G.; Souza Filho, C.R. The 2019 Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil. Int. J. Appl. Earth Obs. Geoinf. 2022, 90, 102119. [Google Scholar] [CrossRef]
- Mendes, R.G.; Valle Junior, R.F.; Melo Silva, M.M.A.P.; Fernandes, G.H.M.; Sanches Fernandes, L.F.; Fernandes, A.C.P.; Pissarra, T.C.T.; Melo, M.C.; Valera, C.A.; Pacheco, F.A.L. A partial least squares-path model of environmental degradation in the Paraopeba River, for rainy seasons after the rupture of B1 tailings dam, Brumadinho, Brazil. Sci. Total Environ. 2022, 851, 158248. [Google Scholar] [CrossRef]
- Siqueira, D.; Cesar, R.; Lourenço, R.; Salomão, A.; Marques, M.; Polivanov, H.; Teixeira, M.; Vezzone, M.; Santos, D.; Koifman, G.; et al. Terrestrial and aquatic ecotoxicity of iron ore tailings after the failure of VALE S.A mining dam in Brumadinho (Brazil). J. Geochem. Explor. 2022, 235, 106954. [Google Scholar] [CrossRef]
Compartment | Variable | Description | Unit | |
---|---|---|---|---|
A | River water chemistry (concentrations of contaminants; dissolved) | Al(dis) | Dissolved Aluminum | mg L−1 |
As(dis) | Dissolved Arsenic | mg L−1 | ||
Pb(dis) | Dissolved Lead | mg L−1 | ||
Fe(dis) | Dissolved Iron | mg L−1 | ||
P(dis) | Dissolved Phosphorus | mg L−1 | ||
Mn(dis) | Dissolved Manganese | mg L−1 | ||
B | River water chemistry (concentrations of contaminants; total) | Al(tot) | Total Aluminum | mg L−1 |
As(tot) | Total Arsenic | mg L−1 | ||
Pb(tot) | Total Lead | mg L−1 | ||
Fe(tot) | Total Iron | mg L−1 | ||
P(tot) | Total Phosphorus | mg L−1 | ||
Mn(tot) | Total Manganese | mg L−1 | ||
C | River water condition | DO | Dissolved Oxygen | mg L−1 |
pH | pH | |||
Eh | Redox Potential | mV | ||
T | Temperature | °C | ||
Tb | Turbidity | NTU | ||
D | Streamflow | Q | Streamflow | m3 s−1 |
E | Tailings/sediment chemical composition | Al(sed) | Aluminum | mg L−1 |
As(sed) | Arsenic | mg L−1 | ||
Pb(sed) | Lead | mg L−1 | ||
Fe(sed) | Iron | mg L−1 | ||
P(sed) | Phosphorus | mg L−1 | ||
Mn(sed) | Manganese | mg L−1 | ||
F | Tailings/sediment grainsize fractions | Clay | Clay (0.0002–0.00394 mm) | g kg−1 |
Silt | Silt (0.00394–0.062 mm) | g kg−1 | ||
sandVF | Very fine-grained sand (0.062–0.125 mm) | g kg−1 | ||
sandF | Fine-grained sand (0.125–0.25 mm) | g kg−1 | ||
sandM | Sand (0.250–0.500 mm) | g kg−1 | ||
sandC | Coarse-grained sand (0.500–1.000 mm) | g kg−1 | ||
sandVC | Very coarse-grained sand (1.00–2.00 mm) | g kg−1 |
Station | Period | Target Variable | Greater +Correlation | Feature | Greater −Correlation | Feature | Most Important Features | |
---|---|---|---|---|---|---|---|---|
PT-52 | Dry | Al(dis) | 0.725 | Fe(dis) | −0.490 | Fe(sed) | 0.913 | Turb |
SeaSon | Al(tot) | 0.913 | Turb | −0.315 | Al(sed) | 0.896 | Al(tot) | |
Fe(dis) | 0.745 | Q | −0.639 | Al(sed) | 0.895 | Fe(tot) | ||
Fe(tot) | 0.896 | Al(tot) | −0.414 | Al(sed) | 0.745 | Q | ||
Mn(dis) | 0.426 | Silt | −0.416 | Q | 0.725 | Fe(dis) | ||
Mn(tot) | 0.895 | Fe(tot) | −0.402 | Al(sed) | ||||
PT-52 | Rainy | Al(dis) | 0.665 | P(dis) | −0.479 | T | 0.967 | Fe(tot) |
Season | Al(tot) | 0.967 | Fe(tot) | −0.234 | pH | 0.967 | Al(tot) | |
Fe(dis) | 0.817 | P(dis) | −0.578 | Fe(sed) | 0.817 | P(dis) | ||
Fe(tot) | 0.967 | Al(tot | −0.238 | pH | −0.578 | Fe(sed) | ||
Mn(dis) | 0.469 | P(tot) | −0.250 | Sand_c | −0.479 | T | ||
Mn(tot) | 0.838 | Fe(tot) | −0.244 | T | ||||
PT-13 | Dry | Al(dis) | 0.729 | Al(tot) | −0.466 | Pb(dis) | 0.898 | As(tot) |
Season | Al(tot) | 0.729 | Al(dis) | −0.326 | pH | 0.831 | Turb | |
Fe(dis) | 0.898 | As(tot) | −0.185 | Sand_f | 0.729 | Al(tot) | ||
Fe(tot) | 0.557 | Mn(tot) | −0.353 | pH | 0.729 | Al(dis) | ||
Mn(dis) | 0.686 | As(tot) | −0.281 | Sand_vc | 0.557 | Mn(tot) | ||
Mn(tot) | 0.831 | Turb | −0.285 | pH | ||||
PT-13 | Rainy | Al(dis) | 0.766 | Fe(dis) | −0.387 | T | 0.908 | Turb |
Season | Al(tot) | 0.743 | Turb | −0.289 | pH | 0.886 | Fe(tot) | |
Fe(dis) | 0.885 | Mn(dis) | −0.247 | As(sed) | 0.885 | Mn(dis) | ||
Fe(tot) | 0.908 | Turb | −0.205 | T | 0.885 | Fe(dis) | ||
Mn(dis) | 0.885 | Fe(dis) | −0.259 | As(sed) | −0.387 | T | ||
Mn(tot) | 0.886 | Fe(tot) | −0.228 | As(sed) |
Station/Period | Target | Activation | Architecture | Learning Rate | Solver | R2Adjust |
---|---|---|---|---|---|---|
“Upstream” | Al(dis) | identity | 2, 2, 2 | adaptive | lbfgs | 0.79 |
“Anomalous” PT-13 | Al(dis) | identity | 1, 3 | adaptive | lbfgs | 0.55 |
“Upstream”/Dry | Al(dis) | identity | 2, 3, 4 | adaptive | lbfgs | 0.95 |
“Anomalous” PT-13/Dry | Al(dis) | identity | 2, 1, 4 | adaptive | lbfgs | 0.85 |
“Upstream”/Rainy | Al(dis) | identity | 1, 2, 2 | adaptive | sgd | 0.5 |
“Anomalous” PT-13/Rainy | Al(dis) | identity | 1, 4, 1 | adaptive | sgd | 0.45 |
“Upstream” | Al(tot) | identity | 3, 2 | adaptive | lbfgs | 0.98 |
“Anomalous” PT-13 | Al(tot) | identity | 1, 2 | adaptive | sgd | 0.60 |
“Upstream”/Dry | Al(tot) | identity | 2, 1 | adaptive | lbfgs | 0.99 |
“Anomalous” PT-13/Dry | Al(tot) | identity | 2, 1 | adaptive | lbfgs | 0.97 |
“Upstream”/Rainy | Al(tot) | identity | 2, 1 | adaptive | sgd | 0.96 |
“Anomalous” PT-13/Rainy | Al(tot) | identity | 2, 1 | adaptive | lbfgs | 0.87 |
“Upstream” | Fe(dis) | identity | 4, 3 | adaptive | lbfgs | 0.80 |
“Anomalous” PT-13 | Fe(dis) | identity | 1, 2 | adaptive | sgd | 0.50 |
“Upstream”/Dry | Fe(dis) | identity | 2, 1 | adaptive | lbfgs | 0.93 |
“Anomalous” PT-13/Dry | Fe(dis) | identity | 2, 1 | adaptive | lbfgs | 0.95 |
“Upstream”/Rainy | Fe(dis) | identity | 2, 1 | adaptive | lbfgs | 0.82 |
“Anomalous” PT-13/Rainy | Fe(dis) | identity | 2, 1 | adaptive | sgd | 0.75 |
“Upstream” | Fe(tot) | identity | 2, 4 | adaptive | sgd | 0.95 |
“Anomalous” PT-13 | Fe(tot) | identity | 2, 2 | adaptive | sgd | 0.94 |
“Upstream”/Dry | Fe(tot) | identity | 2, 1 | adaptive | lbfgs | 0.97 |
“Anomalous” PT-13/Dry | Fe(tot) | identity | 2, 1 | adaptive | sgd | 0.52 |
“Upstream”/Rainy | Fe(tot) | identity | 2, 2 | adaptive | sgd | 0.93 |
“Anomalous” PT-13/Rainy | Fe(tot) | identity | 1, 2 | adaptive | lbfgs | 0.98 |
“Upstream” | Mn(dis) | tanh | 4, 3 | adaptive | lbfgs | 0.52 |
“Anomalous” PT-13 | Mn(dis) | tanh | 2, 2 | adaptive | lbfgs | 0.95 |
“Upstream”/Dry | Mn(dis) | tanh | 2, 2 | adaptive | lbfgs | 0.45 |
“Anomalous” PT-13/Dry | Mn(dis) | tanh | 2, 2 | adaptive | lbfgs | 0.31 |
“Upstream”/Rainy | Mn(dis) | tanh | 2, 2 | adaptive | lbfgs | 0.54 |
“Anomalous” PT-13/Rainy | Mn(dis) | tanh | 1, 2 | adaptive | lbfgs | 0.95 |
“Upstream” | Mn(tot) | identity | 3, 2 | adaptive | lbfgs | 0.90 |
“Anomalous” PT-13 | Mn(tot) | identity | 2, 1 | adaptive | lbfgs | 0.96 |
“Upstream”/Dry | Mn(tot) | identity | 2, 2 | adaptive | lbfgs | 0.93 |
“Anomalous” PT-13/Dry | Mn(tot) | identity | 2, 1 | adaptive | lbfgs | 0.87 |
“Upstream”/Rainy | Mn(tot) | identity | 1, 2 | adaptive | lbfgs | 0.51 |
“Anomalous” PT-13/Rainy | Mn(tot) | identity | 2, 2 | adaptive | sgd | 0.96 |
Station/Period | Target | R2Adjust |
---|---|---|
“Upstream” | Al(dis) | 0.94 |
“anomalous” PT-13 | Al(dis) | 0.94 |
“Upstream”/Dry | Al(dis) | 0.92 |
“Upstream”/Rainy | Al(dis) | 0.92 |
“anomalous” PT-13/Dry | Al(dis) | 0.88 |
“anomalous” PT-13/Rainy | Al(dis) | 0.91 |
“Upstream” | Al(tot) | 0.99 |
“anomalous” PT-13 | Al(tot) | 0.94 |
“Upstream”/Dry | Al(tot) | 0.92 |
“Upstream”/Rainy | Al(tot) | 0.92 |
“anomalous” PT-13/Dry | Al(tot) | 0.88 |
“anomalous” PT-13/Rainy | Al(tot) | 0.91 |
“Upstream” | Fe(dis) | 0.95 |
“anomalous” PT-13 | Fe(dis) | 0.94 |
“Upstream”/Dry | Fe(dis) | 0.92 |
“Upstream”/Rainy | Fe(dis) | 0.92 |
“anomalous” PT-13/Dry | Fe(dis) | 0.88 |
“anomalous” PT-13/Rainy | Fe(dis) | 0.91 |
“Upstream” | Fe(tot) | 0.98 |
“anomalous” PT-13 | Fe(tot) | 0.94 |
“Upstream”/Dry | Fe(tot) | 0.92 |
“Upstream”/Rainy | Fe(tot) | 0.92 |
“anomalous” PT-13/Dry | Fe(tot) | 0.88 |
“anomalous” PT-13/Rainy | Fe(tot) | 0.91 |
“Upstream” | Mn(dis) | 0.87 |
“anomalous” PT-13 | Mn(dis) | 0.94 |
“Upstream”/Dry | Mn(dis) | 0.92 |
“Upstream”/Rainy | Mn(dis) | 0.92 |
“anomalous” PT-13/Dry | Mn(dis) | 0.88 |
“anomalous” PT-13/Rainy | Mn(dis) | 0.91 |
“Upstream” | Mn(tot) | 0.97 |
“anomalous” PT-13 | Mn(tot) | 0.94 |
“Upstream”/Dry | Mn(tot) | 0.92 |
“Upstream”/Rainy | Mn(tot) | 0.92 |
“anomalous” PT-13/Dry | Mn(tot) | 0.88 |
“anomalous” PT-13/Rainy | Mn(tot) | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, J.P.; Pacheco, F.A.L.; Valle Junior, R.F.d.; de Melo Silva, M.M.A.P.; Pissarra, T.C.T.; Melo, M.C.d.; Valera, C.A.; Sanches Fernandes, L.F.; Rolim, G.d.S. The Modeling of a River Impacted with Tailings Mudflows Based on the Differentiation of Spatiotemporal Domains and Assessment of Water–Sediment Interactions Using Machine Learning Approaches. Water 2024, 16, 379. https://doi.org/10.3390/w16030379
Moura JP, Pacheco FAL, Valle Junior RFd, de Melo Silva MMAP, Pissarra TCT, Melo MCd, Valera CA, Sanches Fernandes LF, Rolim GdS. The Modeling of a River Impacted with Tailings Mudflows Based on the Differentiation of Spatiotemporal Domains and Assessment of Water–Sediment Interactions Using Machine Learning Approaches. Water. 2024; 16(3):379. https://doi.org/10.3390/w16030379
Chicago/Turabian StyleMoura, João Paulo, Fernando António Leal Pacheco, Renato Farias do Valle Junior, Maytê Maria Abreu Pires de Melo Silva, Teresa Cristina Tarlé Pissarra, Marília Carvalho de Melo, Carlos Alberto Valera, Luís Filipe Sanches Fernandes, and Glauco de Souza Rolim. 2024. "The Modeling of a River Impacted with Tailings Mudflows Based on the Differentiation of Spatiotemporal Domains and Assessment of Water–Sediment Interactions Using Machine Learning Approaches" Water 16, no. 3: 379. https://doi.org/10.3390/w16030379
APA StyleMoura, J. P., Pacheco, F. A. L., Valle Junior, R. F. d., de Melo Silva, M. M. A. P., Pissarra, T. C. T., Melo, M. C. d., Valera, C. A., Sanches Fernandes, L. F., & Rolim, G. d. S. (2024). The Modeling of a River Impacted with Tailings Mudflows Based on the Differentiation of Spatiotemporal Domains and Assessment of Water–Sediment Interactions Using Machine Learning Approaches. Water, 16(3), 379. https://doi.org/10.3390/w16030379