Groundwater Function Zoning for Groundwater Management Based on RSF, EEF, and GEF in the Plain of the Central Plains Urban Agglomeration, China
<p>Location of the study area.</p> "> Figure 2
<p>Conditions of the study area: (<b>a</b>) annual average rainfall; (<b>b</b>) soil type; (<b>c</b>) shallow aquifer; (<b>d</b>) hydraulic conductivity of shallow aquifer; (<b>e</b>) vadose zone media; (<b>f</b>) depth of groundwater; (<b>g</b>) land use.</p> "> Figure 3
<p>Groundwater resource units and exploitable modulus of the study area.</p> "> Figure 4
<p>Groundwater quality of the study area.</p> "> Figure 5
<p>Groundwater RSF of the study area.</p> "> Figure 6
<p>Groundwater EEFs of the study area.</p> "> Figure 7
<p>Groundwater GEFs of the study area.</p> "> Figure 8
<p>Groundwater functions of the study area.</p> "> Figure 9
<p>Groundwater vulnerability from DRASTIC model.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Method
3.1. RSF Evaluation
3.1.1. Groundwater Quantity Evaluation
3.1.2. Groundwater Quality Evaluation
3.2. EEF Evaluation
- (1)
- Indicator selection and rating
- (2)
- Determination of weight
3.3. GEF Evaluation
3.4. Groundwater Function Zoning
4. Results
4.1. RSF
4.1.1. Groundwater Quantity Evaluation Results
4.1.2. Groundwater Quality Evaluation Results
4.1.3. RSF Evaluation Results
4.2. EEF
4.3. GEF
4.4. Groundwater Function Zoning Results
5. Discussions
5.1. Groundwater Vulnerability
5.2. Human Activities, Groundwater Vulnerability, and Groundwater Function Zoning
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, G.; Shen, J.; Nie, Z.; Wang, J.; Yan, M.; Hao, M. Theory and methodology of regional groundwater function and sustainable utilization assessment in China. Hydrogeol. Eng. Geol. 2006, 71, 62–66. [Google Scholar]
- Sherif, M.; Sefelnasr, A.; Ebraheem, A.A.; Mulla, M.A.; Alzaabi, M.; Alghafli, K. Spatial and Temporal Changes of Groundwater Storage in the Quaternary Aquifer, UAE. Water 2021, 13, 864. [Google Scholar] [CrossRef]
- Tan, M. Research on the Shallow Groundwater Functional Zoning of Jinjiang Based on GIS; Nanjing Normal University: Nanjing, China, 2011. [Google Scholar]
- Qu, J.; Zhang, Y.; Zou, X. Evaluation of groundwater function in Puyang City based on dissipation theory. Water Resour. Hydropower Eng. 2019, 50, 70–77. [Google Scholar]
- Wang, J.; Zhang, G.; Cui, H.; Wang, Q.; Dong, H.; Hao, J. System index attribute and application of groundwater function zoning in northwest inland area of China. J. Hydraul. Eng. 2020, 51, 796–804. [Google Scholar]
- Chen, H.; Cui, G. Henan Statistical Yearbook 2022. China Statistics Press: Beijing, China, 2023. [Google Scholar]
- Yang, M.; Zhang, H.; Li, Y.; Zhou, Z.; Wu, X.; Wu, Y.; Xiao, H.; Xia, Q.; Yang, S.; Wang, W.; et al. 2021 He Nan Water Resources Bulletin; Henan Water Conservancy Department: Zhengzhou, China, 2022. [Google Scholar]
- Zhou, Z.; Xu, Z. Research on the Exploitation and Utilization of Groundwater in Henan Province. China Rural. Water Hydropower 2014, 12, 27–30. [Google Scholar]
- Du, J.; Jin, M.; Luo, Y.; Wei, X. Assessment index system for shallow groundwater function: A case study on the plain and hummock of Henan Province. Water Resour. Prot. 2007, 96, 89–92. [Google Scholar]
- Zhang, R. Characteristics of groundwater resources and their reasonable development. Hydrogeol. Eng. Geol. 2003, 30, 1–5. [Google Scholar]
- Guo, Z.; Liu, H. Eco-depth of Groundwater Table for Natural Vegetation in Inland Basin, Northwestern China. J. Arid. Land Resour. Environ. 2005, 19, 157–161. [Google Scholar]
- Cui, X.; Xu, Z. Evaluation of groundwater-overdraft regions in main cities of Henan Province. Water Resour. Prot. 2008, 27, 17–22. [Google Scholar]
- Chen, Z.; Hao, H.; Wei, W.; Chen, J.; Zhang, F.; Wang, Y. Groundwater Renewal and Characteristics in the Deep Confined Aquifer in North China Plain. Resour. Sci. 2009, 31, 388–393. [Google Scholar]
- Roseta-Palma, C. Joint Quantity/Quality Management of Groundwater. Environ. Resour. Econ. 2003, 26, 89–106. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Teng, Y. Review on assessment methods of groundwater sustainable yield. J. Hydraul. Eng. 2006, 37, 525–533. [Google Scholar]
- MLRMWR (The Ministry of Land and Resources and the Ministry of Water Resources of the People’s Republic of China). Quality Standards for Groundwater; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; China National Standardization Administration: Beijing, China, 2017. [Google Scholar]
- Xu, Z. Development and Utilization of Underground Water Resources and Ecological Environment in Henan Province. In Proceedings of the Forum on Water Environment of Some Cities in the Yellow River Basin; 2008; pp. 32–43. [Google Scholar]
- Saaty, T.L. Decision making—The Analytic Hierarchy and Network Processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Geng, S. The Method Study on Integrated Physicogeographical Regionalization of Fengxian Based on GIS; Xi’an University of Science and Technology: Xi’an, China, 2018. [Google Scholar]
- Chen, X.; Fan, J.; Sun, W.; Tao, A.; Liang, Y. A Literature Review of Research on Territorial Function ldentifying. Geogr. Geo-Inf. Sci. 2013, 29, 72–79. [Google Scholar]
- Nian, P.; Cai, Y.; Ma, S.; Zhuang, L.; Zhang, L. Review of Spatial Comprehensive Zoning in China. China Land Sci. 2014, 28, 20–25. [Google Scholar]
- Jiang, X. The Study of Groundwater Resources Evaluation and Development Mode in Eastern Mountain of Jilin Province Zone; Jilin University: Changchun, China, 2017. [Google Scholar]
- Guo, X.; Ma, C.M.; Hu, X.J.; Hu, X.J.; Yan, W. Application of groundwater functional zoning to coastal groundwater management: A case study in the plain area of Weifang City, China. Environ. Earth Sci. 2019, 78, 525. [Google Scholar] [CrossRef]
- Xie, J.; You, J.; Jiang, J. Using level difference maximization method to calculate combined weights for groundwater function evaluation. Water Resour. Prot. 2021, 37, 54–59. [Google Scholar]
- MHURD (Ministry of Housing and Urban-Rural Development of the People’s Republic of China). Standard for Water Function Zoning; Ministry of Housing and Urban-Rural Development of the People’s Republic of China; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2010. [Google Scholar]
- Vrba, J.; Zaporozec, A. Guidebook on mapping groundwater vulnerability. Int. Contrib. Hydrogeol. 1994, 16, 131p. [Google Scholar]
- Association, N.W.W. DRASTIC: A Standardized System for Evaluating Ground ater Pollution Potential Using Hydrogeologic Settings; U. S. Environmental Protection Agency: Washington, DC, USA, 1987. [Google Scholar]
- Chen, H. Groundwater Vulnerability Assessment Based on Thecombine of DRASTIC Model and ArcGIS; China University of Geosciences (Beijing): Beijing, China, 2018. [Google Scholar]
- Guo, J.; Zhao, L.; Liu, N. Study on the ability of blocking pollutants in the vadose zone based on DRASTIC. Environ. Pollut. Control 2011, 33, 52–55. [Google Scholar]
- Zhan, J.; Qu, J. Establishment of Groundwater Vulnerability Index System. J. Anhui Agric. Sci. 2016, 44, 59–61. [Google Scholar]
- Hu, X.; Ma, C.; Qi, H.; Guo, X. Groundwater vulnerability assessment using the GALDIT model and the improved DRASTIC model: A case in Weibei Plain, China. Environ. Sci. Pollut. Res. 2018, 25, 32524–32539. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Bansod, B.K.S.; Debnath, S.K.; Thakur, P.K.; Ghanshyam, C. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation. Environ. Impact Assess. Rev. 2015, 51, 38–49. [Google Scholar] [CrossRef]
- Beaujean, J.; Lemieux, J.M.; Dassargues, A.; Therrien, R.; Brouyère, S. Physically Based Groundwater Vulnerability Assessment Using Sensitivity Analysis Methods. Groundwater 2014, 52, 864–874. [Google Scholar] [CrossRef] [PubMed]
- Nadiri, A.A.; Norouzi, H.; Khatibi, R.; Gharekhani, M. Groundwater DRASTIC vulnerability mapping by unsupervised and supervised techniques using a modelling strategy in two levels. J. Hydrol. 2019, 574, 744–759. [Google Scholar] [CrossRef]
- Jamrah, A.; Al-Futaisi, A.; Rajmohan, N.; Al-Yaroubi, S. Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment. Environ. Monit. Assess. 2008, 147, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Sherif, M.M.; Ebraheem, A.M.; Al Mulla, M.M.; Shetty, A.V. New System for the Assessment of Annual Groundwater Recharge from Rainfall in the United Arab Emirates. Environ. Earth Sci. 2018, 77, 412. [Google Scholar] [CrossRef]
- Norouzi, H.; Moghaddam, A.A.; Celico, F.; Shiri, J. Assessment of groundwater vulnerability using genetic algorithm and random forest methods (case study: Miandoab plain, NW of Iran). Environ. Sci. Pollut. Res. 2021, 28, 39598–39613. [Google Scholar] [CrossRef]
- Guo, X.; Yang, Z.; Li, C.; Xiong, H.; Ma, C. Combining the classic vulnerability index and affinity propagation clustering algorithm to assess the intrinsic aquifer vulnerability of coastal aquifers on an integrated scale. Environ. Res. 2023, 217, 114877. [Google Scholar] [CrossRef]
Function | Categories | Prospect of Development and Utilization |
---|---|---|
RSF | Strong | Large-scale exploitation |
Moderate | Regulated exploitation | |
Weak | Prohibited exploitation | |
EEF | Strong | Unexploitable |
Moderate | Conservational utilization | |
Weak | Large-scale utilization | |
GEF | Strong | Unexploitable |
Moderate | Conservational utilization | |
Weak | Large-scale utilization |
Groundwater Resource Unit | Total Recharge (104 m3) | Exploitable Coefficient | Exploitable Quantity (104 m3) | Exploitable Modulus (104 m3/km2) |
---|---|---|---|---|
1 | 30,764 | 0.71 | 21,842.44 | 17.6 |
2 | 1347 | 0.71 | 956.37 | 24.8 |
3 | 3580 | 0.71 | 2541.8 | 17.6 |
4 | 5705 | 0.71 | 4050.55 | 17.6 |
5 | 1225 | 0.71 | 869.75 | 17.6 |
6 | 73,384 | 0.77 | 56,505.68 | 12.8 |
7 | 7882 | 0.77 | 6069.14 | 12.8 |
8 | 10,915 | 0.77 | 8404.55 | 12.8 |
9 | 17,171 | 0.83 | 14,251.93 | 27.1 |
10 | 1746 | 0.83 | 1449.18 | 27.1 |
11 | 14,788 | 0.83 | 12,274.04 | 27.1 |
12 | 1736 | 0.83 | 1440.88 | 27.1 |
13 | 6085 | 0.83 | 5050.55 | 27.1 |
14 | 2233 | 0.74 | 1652.42 | 12.4 |
15 | 4618 | 0.74 | 3417.32 | 24.8 |
16 | 32,358 | 0.78 | 25,239.24 | 16.1 |
17 | 57,996 | 0.78 | 45,236.88 | 16.1 |
18 | 21,135 | 0.78 | 16,485.3 | 16.1 |
19 | 8811 | 0.78 | 6872.58 | 16.1 |
20 | 11,816 | 0.83 | 9807.28 | 17.7 |
21 | 15,856 | 0.83 | 13,160.48 | 17.7 |
22 | 15,441 | 0.83 | 12,816.03 | 17.7 |
23 | 8117 | 0.83 | 6737.11 | 17.7 |
24 | 44,990 | 0.78 | 35,092.2 | 12.5 |
25 | 27,580 | 0.78 | 21,512.4 | 13.0 |
26 | 2170 | 0.78 | 1692.6 | 13.0 |
27 | 38,407 | 0.74 | 28,421.18 | 12.4 |
Exploitable Modulus | Groundwater Quality | ||||
---|---|---|---|---|---|
Good | Moderate | Relatively Poor | Poor | ||
Rating | 4 | 3 | 2 | 1 | |
Large | 3 | 3 | 3 | 2 | 2 |
Moderate | 2 | 2 | 2 | 2 | 1 |
Small | 1 | 1 | 1 | 1 | 1 |
Indicators | Categories and Ratings | ||
---|---|---|---|
3 | 2 | 1 | |
Land desertification situation | Land desertification | - | No land desertification |
Ecological function | Important | Common | Other |
Depth of groundwater (m) | <8 | 8–16 | >16 |
Vegetation cover index | <0 | 0–0.2 | >0.2 |
Indicators | Categories and Ratings | ||
---|---|---|---|
3 | 2 | 1 | |
Depth of groundwater (m) | <8 | 8–16 | >16 |
Salt groundwater situation | Mountains | Salt groundwater | Fresh groundwater |
Regional crustal stability | Unstable | Relatively stable | Stable |
Rock and soil mass type | Clay, loess | Soft rock formation dominated by clastic rock | Hard rock formation dominated by carbonate and clastic rocks |
Functional Area | Coordinates (x, y, z) |
---|---|
Development and utilization area | (3, 2, 2), (3, 2, 1), (3, 1, 2), (3, 1, 1), (2, 1, 1) |
Ecologically vulnerable area | (2, 3, 2), (2, 3, 1), (1, 3, 2), (1, 3, 1), (1, 3, 3) |
Geological-disaster-prone area | (2, 2, 3), (2, 1, 3), (1, 2, 3), (1, 1, 3) |
Conservation area | (2, 2, 2), (2, 2, 1), (2, 1, 2), (1, 2, 2), (1, 2, 1), (1, 1, 2) |
Reservation area | (3, 3, 3), (3, 3, 2), (3, 3, 1), (3, 2, 3), (3, 1, 3), (2, 3, 3), (1, 1, 1) |
Indicators | Unit | Categories and Ratings | |||
---|---|---|---|---|---|
D | m | >16 | 8–16 | 4–8 | <4 |
1 | 3 | 5 | 7 | ||
R | mm | 500–600 | 600–700 | 700–800 | >800 |
1 | 3 | 5 | 7 | ||
A | - | - | Sandstone | Others | Sandy gravel stratum, karst limestone |
- | 3 | 5 | 7 | ||
S | - | Silty sandy clay, loamy clay | Sandy clayey loam, silty clayey loam | Silty loam, loam | Sandy soil, sandy loam |
1 | 3 | 5 | 7 | ||
T | ° | - | - | - | <5 |
- | - | - | 7 | ||
I | - | - | Silty clay | Silt | Gravel |
- | 3 | 5 | 7 | ||
C | m/d | 0–6 | 7–13 | 14–21 | 22–32 |
1 | 3 | 5 | 7 |
Weight | D | R | A | S | T | I | C | |
---|---|---|---|---|---|---|---|---|
Theoretical (%) | 21.74 | 17.39 | 13.04 | 8.70 | 4.35 | 21.74 | 13.04 | |
Effective (%) | Min | 4.27 | 2.92 | 2.56 | 1.60 | 4.83 | 13.04 | 2.56 |
Mean | 17.23 | 12.26 | 18.49 | 8.87 | 7.01 | 25.14 | 11.01 | |
Max | 37.31 | 41.79 | 32.31 | 21.54 | 14.89 | 43.86 | 25.93 | |
Std. | 7.00 | 6.00 | 5.00 | 5.00 | 1.00 | 5.00 | 6.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Ma, C.; Guo, X.; Li, Y.; Xiong, H.; Qiu, Y.; Cui, H. Groundwater Function Zoning for Groundwater Management Based on RSF, EEF, and GEF in the Plain of the Central Plains Urban Agglomeration, China. Water 2023, 15, 3158. https://doi.org/10.3390/w15173158
Hu X, Ma C, Guo X, Li Y, Xiong H, Qiu Y, Cui H. Groundwater Function Zoning for Groundwater Management Based on RSF, EEF, and GEF in the Plain of the Central Plains Urban Agglomeration, China. Water. 2023; 15(17):3158. https://doi.org/10.3390/w15173158
Chicago/Turabian StyleHu, Xiaojing, Chuanming Ma, Xu Guo, Yonggang Li, Hanxiang Xiong, Yang Qiu, and Hao Cui. 2023. "Groundwater Function Zoning for Groundwater Management Based on RSF, EEF, and GEF in the Plain of the Central Plains Urban Agglomeration, China" Water 15, no. 17: 3158. https://doi.org/10.3390/w15173158
APA StyleHu, X., Ma, C., Guo, X., Li, Y., Xiong, H., Qiu, Y., & Cui, H. (2023). Groundwater Function Zoning for Groundwater Management Based on RSF, EEF, and GEF in the Plain of the Central Plains Urban Agglomeration, China. Water, 15(17), 3158. https://doi.org/10.3390/w15173158