Comparative Analysis of YOLOv8 and YOLOv10 in Vehicle Detection: Performance Metrics and Model Efficacy
<p>Evolution of the YOLO architecture.</p> "> Figure 2
<p>Sample images from the dataset [<a href="#B44-vehicles-06-00065" class="html-bibr">44</a>].</p> "> Figure 3
<p>Performance of YOLOv8 model.</p> "> Figure 4
<p>YOLOv 10 model’s performance.</p> "> Figure 5
<p>Precision and confidence curve of (<b>A</b>) YOLOv8 and (<b>B</b>) YOLOv10.</p> "> Figure 6
<p>Recall and confidence curves of (<b>A</b>) YOLOv8 and (<b>B</b>) YOLOv10 models.</p> "> Figure 7
<p>F1 and confidence curves of (<b>A</b>) YOLOv8 and (<b>B</b>) YOLOv10 models.</p> "> Figure 8
<p>Normalized confusion matrix for YOLOv8.</p> "> Figure 9
<p>Normalized confusion matrix for YOLOv10.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Dataset
3.2. Data Augmentation
3.2.1. Random Crop
3.2.2. Random Rotation
3.2.3. Random Shear
3.2.4. Random Grayscale
3.2.5. Saturation
3.2.6. Brightness
3.2.7. Blur
3.2.8. Random Noise
3.2.9. Hue, Saturation, and Value (HSV)
3.2.10. Translate
3.2.11. Mosaic
3.2.12. Random Erasing
3.3. YOLOv8 Architecture
3.4. YOLOv10 Architecture
4. Experimental Results
5. Discussion
Limitations of This Study
6. Conclusions
Future Developments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dodia, A.; Kumar, S. A comparison of yolo based vehicle detection algorithms. In Proceedings of the 2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1), Bangalore, India, 21–22 April 2023; pp. 1–6. [Google Scholar]
- Laopracha, N.; Sunat, K. Comparative study of computational time that HOG-based features used for vehicle detection. In Recent Advances in Information and Communication Technology 2017, Proceedings of the 13th International Conference on Computing and Information Technology (IC2IT), Bangkok, Thailand, 6–7 July 2017; Springer: Cham, Switzerland, 2018; pp. 275–284. [Google Scholar]
- Pyo, J.; Bang, J.; Jeong, Y. Front collision warning based on vehicle detection using CNN. In Proceedings of the 2016 International SoC Design Conference (ISOCC), Jeju, Republic of Korea, 23–26 October 2016; pp. 163–164. [Google Scholar]
- Kavitha, M.; Gayathri, R.; Polat, K.; Alhudhaif, A.; Alenezi, F. Performance evaluation of deep e-CNN with integrated spatial-spectral features in hyperspectral image classification. Measurement 2022, 191, 110760. [Google Scholar] [CrossRef]
- Ali, L.; Alnajjar, F.; Jassmi, H.A.; Gocho, M.; Khan, W.; Serhani, M.A. Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures. Sensors 2021, 21, 1688. [Google Scholar] [CrossRef] [PubMed]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Gao, Y.; Guo, S.; Huang, K.; Chen, J.; Gong, Q.; Zou, Y.; Bai, T.; Overett, G. Scale optimization for full-image-CNN vehicle detection. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 785–791. [Google Scholar]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-Fcn: Object detection via region-based fully convolutional networks. Adv. Neural Inf. Process. Syst. 2016, 29. [Google Scholar]
- Alif, M.A.R.; Ahmed, S.; Hasan, M.A. Isolated Bangla handwritten character recognition with convolutional neural network. In Proceedings of the 2017 20th International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 22–24 December 2017; pp. 1–6. [Google Scholar]
- Azimjonov, J.; Özmen, A. A real-time vehicle detection and a novel vehicle tracking systems for estimating and monitoring traffic flow on highways. Adv. Eng. Inform. 2021, 50, 101393. [Google Scholar] [CrossRef]
- Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S. Single-shot refinement neural network for object detection. arXiv 2017, arXiv:1711.06897. [Google Scholar]
- Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. Dssd: Deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Jocher, G.; Munawar, M.R.; Chaurasia, A. YOLO: A Brief History; 2023. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3532980 (accessed on 11 February 2023).
- Al Rabbani Alif, M.; Hussain, M. YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application in the agricultural domain. arXiv 2024, arXiv:2406.10139. [Google Scholar]
- Fernandez-Sanjurjo, M.; Bosquet, B.; Mucientes, M.; Brea, V.M. Real-time visual detection and tracking system for traffic monitoring. Eng. Appl. Artif. Intell. 2019, 85, 410–420. [Google Scholar] [CrossRef]
- Mandellos, N.A.; Keramitsoglou, I.; Kiranoudis, C.T. A background subtraction algorithm for detecting and tracking vehicles. Expert Syst. Appl. 2011, 38, 1619–1631. [Google Scholar] [CrossRef]
- Erbs, F.; Barth, A.; Franke, U. Moving vehicle detection by optimal segmentation of the dynamic stixel world. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 951–956. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Alif, M.A.R.; Hussain, M.; Tucker, G.; Iwnicki, S. BoltVision: A Comparative Analysis of CNN, CCT, and ViT in Achieving High Accuracy for Missing Bolt Classification in Train Components. Machines 2024, 12, 93. [Google Scholar] [CrossRef]
- Alif, M.A.R.; Hussain, M. Lightweight Convolutional Network with Integrated Attention Mechanism for Missing Bolt Detection in Railways. Metrology 2024, 4, 254–278. [Google Scholar] [CrossRef]
- Alif, M.A.R. Attention-Based Automated Pallet Racking Damage Detection. Int. J. Innov. Sci. Res. Technol. 2024, 9, 728–740. [Google Scholar]
- Hussain, M. YOLO-v5 Variant Selection Algorithm Coupled with Representative Augmentations for Modelling Production-Based Variance in Automated Lightweight Pallet Racking Inspection. Big Data Cogn. Comput. 2023, 7, 120. [Google Scholar] [CrossRef]
- Zahid, A.; Hussain, M.; Hill, R.; Al-Aqrabi, H. Lightweight convolutional network for automated photovoltaic defect detection. In Proceedings of the 2023 9th International Conference on Information Technology Trends (ITT), Dubai, United Arab Emirates, 24–25 May 2023; IEEE: New York, NY, USA, 2023; pp. 133–138. [Google Scholar]
- Alif, M.A.R. State-of-the-Art Bangla Handwritten Character Recognition Using a Modified Resnet-34 Architecture. Int. J. Innov. Sci. Res. Technol. 2024, 9, 438–448. [Google Scholar]
- Sang, J.; Wu, Z.; Guo, P.; Hu, H.; Xiang, H.; Zhang, Q.; Cai, B. An improved YOLOv2 for vehicle detection. Sensors 2018, 18, 4272. [Google Scholar] [CrossRef]
- Ćorović, A.; Ilić, V.; Ðurić, S.; Marijan, M.; Pavković, B. The real-time detection of traffic participants using YOLO algorithm. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 1–4. [Google Scholar]
- Hu, X.; Wei, Z.; Zhou, W. A video streaming vehicle detection algorithm based on YOLOv4. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 March 2021; Volume 5, pp. 2081–2086. [Google Scholar]
- Kasper-Eulaers, M.; Hahn, N.; Berger, S.; Sebulonsen, T.; Myrland, Ø.; Kummervold, P.E. Detecting heavy goods vehicles in rest areas in winter conditions using YOLOv5. Algorithms 2021, 14, 114. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Geng, Y.; Jiang, H.; Cheng, M.; Zhang, B.; Ke, Z.; Xu, X.; Chu, X. Yolov6 v3. 0: A full-scale reloading. arXiv 2023, arXiv:2301.05586. [Google Scholar]
- Rouf, M.A.; Wu, Q.; Yu, X.; Iwahori, Y.; Wu, H.; Wang, A. Real-time vehicle detection, tracking and counting system based on YOLOv7. Embed. Selforganising Syst. 2023, 10, 4–8. [Google Scholar]
- Farid, A.; Hussain, F.; Khan, K.; Shahzad, M.; Khan, U.; Mahmood, Z. A fast and accurate real-time vehicle detection method using deep learning for unconstrained environments. Appl. Sci. 2023, 13, 3059. [Google Scholar] [CrossRef]
- Soylu, E.; Soylu, T. A performance comparison of YOLOv8 models for traffic sign detection in the Robotaxi-full scale autonomous vehicle competition. Multimed. Tools Appl. 2024, 83, 25005–25035. [Google Scholar] [CrossRef]
- Al Mudawi, N.; Qureshi, A.M.; Abdelhaq, M.; Alshahrani, A.; Alazeb, A.; Alonazi, M.; Algarni, A. Vehicle detection and classification via YOLOv8 and deep belief network over aerial image sequences. Sustainability 2023, 15, 14597. [Google Scholar] [CrossRef]
- Nielsen, N. Comparison between YOLOv10, YOLOv9 and YOLOv8 on Real-World Videos. 2024. Available online: https://www.youtube.com/watch?app=desktop&v=x20MxX-AWzE (accessed on 7 August 2024).
- Boneh, M. Vehicle-Detection. 2021. Available online: https://github.com/MaryamBoneh/Vehicle-Detection (accessed on 11 February 2023).
- Terven, J.; Córdova-Esparza, D.M.; Romero-González, J.A. A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. Yolov10: Real-time end-to-end object detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Hussain, T.; Hussain, M.; Al-Aqrabi, H.; Alsboui, T.; Hill, R. A Review on Defect Detection of Electroluminescence-Based Photovoltaic Cell Surface Images Using Computer Vision. Energies 2023, 16, 4012. [Google Scholar] [CrossRef]
Layer | Filters | Size | Repeat | Output Size |
---|---|---|---|---|
Image | - | - | - | 640 × 640 |
Conv | 16 | 3 × 3/2 | 1 | 320 × 320 |
Conv | 32 | 3 × 3/2 | 1 | 160 × 160 |
C2f | 32 | 1 × 1/1 | 1 | 160 × 160 |
Conv | 64 | 3 × 3/2 | 1 | 80 × 80 |
C2f | 64 | 1 × 1/1 | 2 | 80 × 80 |
Conv | 128 | 3 × 3/2 | 1 | 40 × 40 |
C2f | 128 | 1 × 1/1 | 2 | 40 × 40 |
Conv | 256 | 3 × 3/2 | 1 | 20 × 20 |
C2f | 256 | 1 × 1/1 | 1 | 20 × 20 |
SPPF | 256 | 5 × 5/1 | 1 | 20 × 20 |
Upsample | - | 2× | 1 | 40 × 40 |
Concat | - | - | 1 | 40 × 40 |
C2f | 128 | 1 × 1/1 | 1 | 40 × 40 |
Upsample | - | 2× | 1 | 80 × 80 |
Concat | - | - | 1 | 80 × 80 |
C2f | 64 | 1 × 1/1 | 1 | 80 × 80 |
Conv | 64 | 3 × 3/2 | 1 | 40 × 40 |
Concat | - | - | 1 | 40 × 40 |
C2f | 128 | 1 × 1/1 | 1 | 40 × 40 |
Conv | 128 | 3 × 3/2 | 1 | 20 × 20 |
Concat | - | - | 1 | 20 × 20 |
C2f | 256 | 1 × 1/1 | 1 | 20 × 20 |
Detect | 64, 128, 256 | - | 1 | 80 × 80, 40 × 40, 20 × 20 |
Layer | Filters | Size | Repeat | Output Size |
---|---|---|---|---|
Image | - | - | - | 640 × 640 |
Conv | 16 | 3 × 3/2 | 1 | 320 × 320 |
Conv | 32 | 3 × 3/2 | 1 | 160 × 160 |
C2f | 32 | 1 × 1/1 | 1 | 160 × 160 |
Conv | 64 | 3 × 3/2 | 1 | 80 × 80 |
C2f | 64 | 1 × 1/1 | 2 | 80 × 80 |
SCDown | 128 | 3 × 3/2 | 1 | 40 × 40 |
C2f | 128 | 1 × 1/1 | 2 | 40 × 40 |
SCDown | 256 | 3 × 3/2 | 1 | 20 × 20 |
C2f | 256 | 1 × 1/1 | 1 | 20 × 20 |
SPPF | 256 | 5 × 5/1 | 1 | 20 × 20 |
PSA | 256 | - | 1 | 20 × 20 |
Upsample | - | 2× | 1 | 40 × 40 |
Concat | - | - | 1 | 40 × 40 |
C2f | 128 | 1 × 1/1 | 1 | 40 × 40 |
Upsample | - | 2× | 1 | 80 × 80 |
Concat | - | - | 1 | 80 × 80 |
C2f | 64 | 1 × 1/1 | 1 | 80 × 80 |
Conv | 64 | 3 × 3/2 | 1 | 40 × 40 |
Concat | - | - | 1 | 40 × 40 |
C2f | 128 | 1 × 1/1 | 1 | 40 × 40 |
SCDown | 128 | 3 × 3/2 | 1 | 20 × 20 |
Concat | - | - | 1 | 20 × 20 |
C2fCIB | 256 | 1 × 1/1 | 1 | 20 × 20 |
Detect | 64, 128, 256 | - | 1 | 80 × 80, 40 × 40, 20 × 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sundaresan Geetha, A.; Alif, M.A.R.; Hussain, M.; Allen, P. Comparative Analysis of YOLOv8 and YOLOv10 in Vehicle Detection: Performance Metrics and Model Efficacy. Vehicles 2024, 6, 1364-1382. https://doi.org/10.3390/vehicles6030065
Sundaresan Geetha A, Alif MAR, Hussain M, Allen P. Comparative Analysis of YOLOv8 and YOLOv10 in Vehicle Detection: Performance Metrics and Model Efficacy. Vehicles. 2024; 6(3):1364-1382. https://doi.org/10.3390/vehicles6030065
Chicago/Turabian StyleSundaresan Geetha, Athulya, Mujadded Al Rabbani Alif, Muhammad Hussain, and Paul Allen. 2024. "Comparative Analysis of YOLOv8 and YOLOv10 in Vehicle Detection: Performance Metrics and Model Efficacy" Vehicles 6, no. 3: 1364-1382. https://doi.org/10.3390/vehicles6030065
APA StyleSundaresan Geetha, A., Alif, M. A. R., Hussain, M., & Allen, P. (2024). Comparative Analysis of YOLOv8 and YOLOv10 in Vehicle Detection: Performance Metrics and Model Efficacy. Vehicles, 6(3), 1364-1382. https://doi.org/10.3390/vehicles6030065